Research on the preparation and corrosion resistance of integrated NiTi alloy bionic superhydrophobic corrosion-resistant surface based on additive manufacturing technology

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2024-12-13 DOI:10.1016/j.apsusc.2024.162048
Zhenglei Yu, Pengwei Sha, Yanan Yang, KongYuan Yang, Binkai Guo, Zhengzhi Mu, Yiwu Kuang, Xin Liu, Zezhou Xu, Yunting Guo, Zhenze Liu
{"title":"Research on the preparation and corrosion resistance of integrated NiTi alloy bionic superhydrophobic corrosion-resistant surface based on additive manufacturing technology","authors":"Zhenglei Yu, Pengwei Sha, Yanan Yang, KongYuan Yang, Binkai Guo, Zhengzhi Mu, Yiwu Kuang, Xin Liu, Zezhou Xu, Yunting Guo, Zhenze Liu","doi":"10.1016/j.apsusc.2024.162048","DOIUrl":null,"url":null,"abstract":"Wettable surfaces on metal substrates have garnered significant attention due to their critical role in aerospace and medical applications, particularly in enhancing corrosion resistance. However, achieving a transition in metal surface wettability often necessitates secondary processing of the substrate surface, which is typically limited to components with simple geometries. The direct fabrication of corrosion-resistant structures on complex component surfaces remains a considerable challenge. This paper proposes a novel method for the direct preparation of corrosion-resistant structures on intricate parts utilizing additive manufacturing technology, successfully fabricating three bionic corrosion-resistant structures. The results indicate that the bionic lotus leaf structure sample, with a height of 500 μm, exhibits the best corrosion resistance, demonstrating an order of magnitude improvement over the original sample and achieving the highest contact angle value of 150.1°. Notably, the bionic lotus leaf structure (<em>I</em><sub>corr</sub> = 9.8 ± 0.8 × 10<sup>−8</sup> A/cm<sup>2</sup>) outperforms both the bionic cicada wing structure (<em>I</em><sub>corr</sub> = 1.2 ± 0.7 × 10<sup>-6</sup> A/cm<sup>2</sup>) and the bionic shark skin structure (<em>I</em><sub>corr</sub> = 1.7 ± 0.7 × 10<sup>−7</sup> A/cm<sup>2</sup>) in terms of corrosion resistance.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"21 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.162048","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wettable surfaces on metal substrates have garnered significant attention due to their critical role in aerospace and medical applications, particularly in enhancing corrosion resistance. However, achieving a transition in metal surface wettability often necessitates secondary processing of the substrate surface, which is typically limited to components with simple geometries. The direct fabrication of corrosion-resistant structures on complex component surfaces remains a considerable challenge. This paper proposes a novel method for the direct preparation of corrosion-resistant structures on intricate parts utilizing additive manufacturing technology, successfully fabricating three bionic corrosion-resistant structures. The results indicate that the bionic lotus leaf structure sample, with a height of 500 μm, exhibits the best corrosion resistance, demonstrating an order of magnitude improvement over the original sample and achieving the highest contact angle value of 150.1°. Notably, the bionic lotus leaf structure (Icorr = 9.8 ± 0.8 × 10−8 A/cm2) outperforms both the bionic cicada wing structure (Icorr = 1.2 ± 0.7 × 10-6 A/cm2) and the bionic shark skin structure (Icorr = 1.7 ± 0.7 × 10−7 A/cm2) in terms of corrosion resistance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于增材制造技术的集成镍钛合金仿生超疏水耐腐蚀表面的制备与耐腐蚀性研究
金属基底的可润湿表面在航空航天和医疗应用中发挥着至关重要的作用,尤其是在增强耐腐蚀性方面,因此备受关注。然而,要实现金属表面润湿性的转变,往往需要对基材表面进行二次加工,而这通常仅限于几何形状简单的部件。在复杂的部件表面直接制造耐腐蚀结构仍然是一个相当大的挑战。本文提出了一种利用增材制造技术在复杂部件上直接制备耐腐蚀结构的新方法,成功制造出三种仿生耐腐蚀结构。结果表明,高度为 500 μm 的仿生荷叶结构样品的耐腐蚀性能最好,比原始样品提高了一个数量级,接触角最高,达到 150.1°。值得注意的是,仿生荷叶结构(Icorr = 9.8 ± 0.8 × 10-8 A/cm2)的耐腐蚀性优于仿生蝉翼结构(Icorr = 1.2 ± 0.7 × 10-6 A/cm2)和仿生鲨鱼皮结构(Icorr = 1.7 ± 0.7 × 10-7 A/cm2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Surface modification of TiO2 nanoparticles doped in photocured resins for the high refractive index optical waveguide In-situ preparation of highly photocatalytic active octylimidazole functionalized CuO in deep eutectic solvent medium Preparation of magnetic covalent organic framework nanoparticles with multi-active site at room temperature for enrichment of Paclitaxel from Taxus cuspidata Hybrid smart window for visibility control and heat blocking utilizing NMP-LC liquid crystal tunable scattering mode with nanostructured VO2 metasurface Improving nucleation of ALD films via the ion implantation pretreatment approach: Calculation and experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1