Pengyuan Shi, Xiaoyu Wang, Lihao Zhang, Wenqin Song, Kunlin Yang, Shuxi Wang, Ruisheng Zhang, Liangliang Zhang, Takashi Taniguchi, Kenji Watanabe, Sen Yang, Lei Zhang, Lei Wang, Wu Shi, Jie Pan, Zhe Wang
{"title":"Magnetoresistance Oscillations in Vertical Junctions of 2D Antiferromagnetic Semiconductor CrPS4","authors":"Pengyuan Shi, Xiaoyu Wang, Lihao Zhang, Wenqin Song, Kunlin Yang, Shuxi Wang, Ruisheng Zhang, Liangliang Zhang, Takashi Taniguchi, Kenji Watanabe, Sen Yang, Lei Zhang, Lei Wang, Wu Shi, Jie Pan, Zhe Wang","doi":"10.1103/physrevx.14.041065","DOIUrl":null,"url":null,"abstract":"Magnetoresistance (MR) oscillations serve as a hallmark of intrinsic quantum behavior, traditionally observed only in conducting systems. Here we report the discovery of MR oscillations in an insulating system, the vertical junctions of CrPS</a:mi></a:mrow>4</a:mn></a:mrow></a:msub></a:mrow></a:math> which is a two-dimensional <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>A</c:mi></c:math>-type antiferromagnetic semiconductor. Systematic investigations of MR peaks under varying conditions, including electrode materials, magnetic field direction, temperature, voltage bias, and layer number, elucidate a correlation between MR oscillations and spin-canted states in <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msub><e:mrow><e:mi>CrPS</e:mi></e:mrow><e:mrow><e:mn>4</e:mn></e:mrow></e:msub></e:mrow></e:math>. Experimental data and analysis point out the important role of the in-gap electronic states in generating MR oscillations, and we propose that spin selected interlayer hopping of localized defect states may be responsible for it. Our findings not only illuminate the unusual electronic transport in <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:msub><g:mrow><g:mi>CrPS</g:mi></g:mrow><g:mrow><g:mn>4</g:mn></g:mrow></g:msub></g:mrow></g:math> but also underscore the potential of van der Waals magnets for exploring interesting phenomena. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"243 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.041065","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetoresistance (MR) oscillations serve as a hallmark of intrinsic quantum behavior, traditionally observed only in conducting systems. Here we report the discovery of MR oscillations in an insulating system, the vertical junctions of CrPS4 which is a two-dimensional A-type antiferromagnetic semiconductor. Systematic investigations of MR peaks under varying conditions, including electrode materials, magnetic field direction, temperature, voltage bias, and layer number, elucidate a correlation between MR oscillations and spin-canted states in CrPS4. Experimental data and analysis point out the important role of the in-gap electronic states in generating MR oscillations, and we propose that spin selected interlayer hopping of localized defect states may be responsible for it. Our findings not only illuminate the unusual electronic transport in CrPS4 but also underscore the potential of van der Waals magnets for exploring interesting phenomena. Published by the American Physical Society2024
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.