Predicting drought vulnerability with leaf reflectance spectra in Amazonian trees

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-12-14 DOI:10.1016/j.rse.2024.114562
Maquelle N. Garcia, Lucas B.S. Tameirão, Juliana Schietti, Izabela Aleixo, Tomas F. Domingues, K. Fred Huemmrich, Petya K.E. Campell, Loren P. Albert
{"title":"Predicting drought vulnerability with leaf reflectance spectra in Amazonian trees","authors":"Maquelle N. Garcia, Lucas B.S. Tameirão, Juliana Schietti, Izabela Aleixo, Tomas F. Domingues, K. Fred Huemmrich, Petya K.E. Campell, Loren P. Albert","doi":"10.1016/j.rse.2024.114562","DOIUrl":null,"url":null,"abstract":"Hydraulic traits mediate trade-offs between growth and mortality in plants yet characterizing these traits at the community level remains challenging, particularly in the Amazon, where they vary widely across species and environments. While previous studies have used reflectance-based estimates, hydraulic traits, which arise from wood and/or whole-plant anatomy and physiology, have not been comprehensively explored.For the first time, we comprehensively investigated the use of leaf reflectance to predict hydraulic traits alongside leaf functional traits in tropical evergreen and deciduous trees. For 196 Amazonian trees, we measured water potential, leaf mass per area (LMA), leaf reflectance, hydraulic conductivity curves (e.g., P50), and wood density (WD). We examined the relationships between leaf reflectance and traits using partial least square regression (PLSR).Our findings indicate that leaf reflectance accurately predicts variation in LMA (R<sup>2</sup> = 0.8), and reasonably estimates xylem water potential (R<sup>2</sup> = 0.51) and WD (R<sup>2</sup> = 0.52). However, P50 predictions were much less reliable (R<sup>2</sup> = 0.27), with water absorption bands greatly influencing the PLSR model. Leaf phenological strategy had little impact on the results.These findings suggest that reflectance-based remote sensing could monitor water status and forest carbon dynamics through water potential and wood density, respectively. However, our case study applying the PLSR approach to hyperspectral canopy spectra to predict wood density revealed challenges to upscaling. Despite these limitations, remote sensing of forest hydraulic traits at scale could enhance our understanding of drought vulnerability and carbon dynamics in Amazonian forests, with significant implications for conservation.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"200 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2024.114562","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hydraulic traits mediate trade-offs between growth and mortality in plants yet characterizing these traits at the community level remains challenging, particularly in the Amazon, where they vary widely across species and environments. While previous studies have used reflectance-based estimates, hydraulic traits, which arise from wood and/or whole-plant anatomy and physiology, have not been comprehensively explored.For the first time, we comprehensively investigated the use of leaf reflectance to predict hydraulic traits alongside leaf functional traits in tropical evergreen and deciduous trees. For 196 Amazonian trees, we measured water potential, leaf mass per area (LMA), leaf reflectance, hydraulic conductivity curves (e.g., P50), and wood density (WD). We examined the relationships between leaf reflectance and traits using partial least square regression (PLSR).Our findings indicate that leaf reflectance accurately predicts variation in LMA (R2 = 0.8), and reasonably estimates xylem water potential (R2 = 0.51) and WD (R2 = 0.52). However, P50 predictions were much less reliable (R2 = 0.27), with water absorption bands greatly influencing the PLSR model. Leaf phenological strategy had little impact on the results.These findings suggest that reflectance-based remote sensing could monitor water status and forest carbon dynamics through water potential and wood density, respectively. However, our case study applying the PLSR approach to hyperspectral canopy spectra to predict wood density revealed challenges to upscaling. Despite these limitations, remote sensing of forest hydraulic traits at scale could enhance our understanding of drought vulnerability and carbon dynamics in Amazonian forests, with significant implications for conservation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用亚马逊树木的叶片反射光谱预测干旱脆弱性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Ground surface displacement measurement from SAR imagery using deep learning Coupled hydrologic-electromagnetic framework to model permafrost active layer organic soil dielectric properties Joint mapping of melt pond bathymetry and water volume on sea ice using optical remote sensing images and physical reflectance models Quantitative characterization of global nighttime light: A method for measuring energy intensity based on radiant flux and SNPP-VIIRS data A flexible framework for built-up height mapping using ICESat-2 photons and multisource satellite observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1