Estimating global transpiration from TROPOMI SIF with angular normalization and separation for sunlit and shaded leaves

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2025-02-03 DOI:10.1016/j.rse.2024.114586
Chen Zheng, Shaoqiang Wang, Jing M. Chen, Jingfeng Xiao, Jinghua Chen, Zhaoying Zhang, Giovanni Forzieri
{"title":"Estimating global transpiration from TROPOMI SIF with angular normalization and separation for sunlit and shaded leaves","authors":"Chen Zheng, Shaoqiang Wang, Jing M. Chen, Jingfeng Xiao, Jinghua Chen, Zhaoying Zhang, Giovanni Forzieri","doi":"10.1016/j.rse.2024.114586","DOIUrl":null,"url":null,"abstract":"Gross primary productivity (GPP) is more accurately estimated by total canopy solar-induced chlorophyll fluorescence (<span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">total</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">total</mi></msub></math></script></span>) compared to raw sensor observed SIF signals (<span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">obs</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">obs</mi></msub></math></script></span>). The use of two-leaf strategy, which distinguishes between SIF from sunlit (<span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">sunlit</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">sunlit</mi></msub></math></script></span>) and shaded (<span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">shaded</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">shaded</mi></msub></math></script></span>) leaves, further improves GPP estimates. However, the two-leaf strategy, along with SIF corrections for bidirectional effects, has not been applied to transpiration (T) estimation. In this study, we used the angular normalization method to correct the bidirectional effects and separate <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">sunlit</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">sunlit</mi></msub></math></script></span> and <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">shaded</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">shaded</mi></msub></math></script></span>. Then we developed <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">sunlit</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">sunlit</mi></msub></math></script></span> and <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">shaded</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">shaded</mi></msub></math></script></span> driven semi-mechanistic and hybrid models, comparing their T estimates with those from a <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">obs</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">obs</mi></msub></math></script></span> driven semi-mechanistic model at both site and global scales. All three types of SIF-driven T models integrate canopy conductance (<span><span><math><msub is=\"true\"><mi is=\"true\">g</mi><mi is=\"true\">c</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">g</mi><mi is=\"true\">c</mi></msub></math></script></span>) with the Penman-Monteith model, differing in how <span><span><math><msub is=\"true\"><mi is=\"true\">g</mi><mi is=\"true\">c</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">g</mi><mi is=\"true\">c</mi></msub></math></script></span> is derived: from a <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">obs</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">obs</mi></msub></math></script></span> driven semi-mechanistic equation, a <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">sunlit</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">sunlit</mi></msub></math></script></span> and <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">shaded</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">shaded</mi></msub></math></script></span> driven semi-mechanistic equation, and a <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">sunlit</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">sunlit</mi></msub></math></script></span> and <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">shaded</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">shaded</mi></msub></math></script></span> driven machine learning model. When evaluated against partitioned T using the underlying water use efficiency method at 72 eddy covariance sites and two global T remote sensing products, a consistent pattern emerged: <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">sunlit</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">sunlit</mi></msub></math></script></span> and <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">shaded</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">shaded</mi></msub></math></script></span> driven hybrid model &gt; <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">sunlit</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">sunlit</mi></msub></math></script></span> and <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">shaded</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">shaded</mi></msub></math></script></span> driven semi-mechanistic model &gt; <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">obs</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">obs</mi></msub></math></script></span> driven semi-mechanistic model. The <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">sunlit</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">sunlit</mi></msub></math></script></span> and <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">shaded</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">shaded</mi></msub></math></script></span> driven hybrid model demonstrated a notable proficiency under high vapor pressure deficit and low soil water content conditions. The <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">obs</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">obs</mi></msub></math></script></span> driven semi-mechanistic model tends overestimate T at low T values, and this issue is significantly alleviated by the <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">sunlit</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">sunlit</mi></msub></math></script></span> and <span><span><math><msub is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SIF</mi><mi is=\"true\" mathvariant=\"italic\">shaded</mi></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SIF</mi><mi mathvariant=\"italic\" is=\"true\">shaded</mi></msub></math></script></span> driven semi-mechanistic and hybrid models. Our findings demonstrate that correcting the bidirectional effects and using the two-leaf strategy on GPP estimation can improve T estimation and provide a new global T product incorporating vegetation physiological signal.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"39 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2024.114586","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Gross primary productivity (GPP) is more accurately estimated by total canopy solar-induced chlorophyll fluorescence (SIFtotal) compared to raw sensor observed SIF signals (SIFobs). The use of two-leaf strategy, which distinguishes between SIF from sunlit (SIFsunlit) and shaded (SIFshaded) leaves, further improves GPP estimates. However, the two-leaf strategy, along with SIF corrections for bidirectional effects, has not been applied to transpiration (T) estimation. In this study, we used the angular normalization method to correct the bidirectional effects and separate SIFsunlit and SIFshaded. Then we developed SIFsunlit and SIFshaded driven semi-mechanistic and hybrid models, comparing their T estimates with those from a SIFobs driven semi-mechanistic model at both site and global scales. All three types of SIF-driven T models integrate canopy conductance (gc) with the Penman-Monteith model, differing in how gc is derived: from a SIFobs driven semi-mechanistic equation, a SIFsunlit and SIFshaded driven semi-mechanistic equation, and a SIFsunlit and SIFshaded driven machine learning model. When evaluated against partitioned T using the underlying water use efficiency method at 72 eddy covariance sites and two global T remote sensing products, a consistent pattern emerged: SIFsunlit and SIFshaded driven hybrid model > SIFsunlit and SIFshaded driven semi-mechanistic model > SIFobs driven semi-mechanistic model. The SIFsunlit and SIFshaded driven hybrid model demonstrated a notable proficiency under high vapor pressure deficit and low soil water content conditions. The SIFobs driven semi-mechanistic model tends overestimate T at low T values, and this issue is significantly alleviated by the SIFsunlit and SIFshaded driven semi-mechanistic and hybrid models. Our findings demonstrate that correcting the bidirectional effects and using the two-leaf strategy on GPP estimation can improve T estimation and provide a new global T product incorporating vegetation physiological signal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Estimating global transpiration from TROPOMI SIF with angular normalization and separation for sunlit and shaded leaves Individual tree crown delineation in high resolution aerial RGB imagery using StarDist-based model Cross-scalar analysis of multisensor land surface phenology Risk identification of mangroves facing Spartina alterniflora invasion using data-driven approaches with UAV and machine learning models Cloud heights retrieval from passive satellite measurements using lapse rate information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1