Distinct baseline toxicity of volatile organic compounds (VOCs) in gaseous and liquid phases: mixture effects and potential molecular mechanisms

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2024-12-14 DOI:10.1016/j.jhazmat.2024.136890
Shuo Yang, Zhiwei Shao, Ling N. Jin, Liuwen Chen, Xiang Zhang, Mingliang Fang, , Jianmin Chen
{"title":"Distinct baseline toxicity of volatile organic compounds (VOCs) in gaseous and liquid phases: mixture effects and potential molecular mechanisms","authors":"Shuo Yang, Zhiwei Shao, Ling N. Jin, Liuwen Chen, Xiang Zhang, Mingliang Fang, , Jianmin Chen","doi":"10.1016/j.jhazmat.2024.136890","DOIUrl":null,"url":null,"abstract":"Volatile organic compounds (VOCs) are significant pollutants found in various environments, posing health risks. Traditionally, the gaseous VOCs are adsorbed and eluted in liquid phases, and then subjected to toxicity testing, which deviates from the actual exposure scenarios of gaseous VOCs. How the physical states of VOCs (gaseous or liquid) affect their toxicity has not been well understood. This study examined the baseline toxicity of VOCs in both gaseous and liquid phases using a self-assembled passive colonization hydrogel (SAPCH) with luminous bacteria (<em>Vibrio fischeri</em>). The findings revealed that gaseous VOCs exhibited higher baseline toxicity than their liquid counterparts, attributed to the higher free energy and electronic activity of gaseous VOC molecules. Furthermore, the study elucidated that the differences in electronic transitions and energy gaps significantly impact the combined toxicity of VOC mixtures in different phases. Understanding these differences is crucial for assessing the real-world impact of VOCs on health and the environment.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"248 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136890","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Volatile organic compounds (VOCs) are significant pollutants found in various environments, posing health risks. Traditionally, the gaseous VOCs are adsorbed and eluted in liquid phases, and then subjected to toxicity testing, which deviates from the actual exposure scenarios of gaseous VOCs. How the physical states of VOCs (gaseous or liquid) affect their toxicity has not been well understood. This study examined the baseline toxicity of VOCs in both gaseous and liquid phases using a self-assembled passive colonization hydrogel (SAPCH) with luminous bacteria (Vibrio fischeri). The findings revealed that gaseous VOCs exhibited higher baseline toxicity than their liquid counterparts, attributed to the higher free energy and electronic activity of gaseous VOC molecules. Furthermore, the study elucidated that the differences in electronic transitions and energy gaps significantly impact the combined toxicity of VOC mixtures in different phases. Understanding these differences is crucial for assessing the real-world impact of VOCs on health and the environment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气态和液态挥发性有机化合物 (VOC) 的不同基线毒性:混合物效应和潜在分子机制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Mechanistic insights into carbonate radical-driven reactions: Selectivity and the hydrogen atom abstraction route Corrigendum to “An ultrasensitive liquid crystal aptasensing chip assisted by three-way junction DNA pockets for acrylamide detection in food samples” [J Hazard Mater 480 (2024) 136240–136251] Surveillance and environmental risk of very mobile pollutants in urban stormwater and rainwater in a water-stressed city Corrigendum to “Deciphering the distribution and enrichment of arsenic in geothermal water in the Red River Fault Zone, southwest China” [J Hazard Mater 485 (2025) 136756] Simultaneous degradation of organoarsenic and immobilization of arsenate by an electroactive CuFe2O4-CNT/peroxymonosulfate platform: Insights into the distinct roles of the Cu and Fe sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1