Qiang Fu, Fangxiang Song, Changhui Mu, Qingqing Wu, Keliang Wang, Song Li, Xianquan Ao
{"title":"Activating reversible multi-electron reaction of Na3(VO)2(PO4)2F cathode via Fe/F dual-doping for high-energy and stable sodium storage","authors":"Qiang Fu, Fangxiang Song, Changhui Mu, Qingqing Wu, Keliang Wang, Song Li, Xianquan Ao","doi":"10.1016/j.ensm.2024.103960","DOIUrl":null,"url":null,"abstract":"Na<sub>3</sub>(VO)<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F cathode has garnered extensive interest for its stable structure, abundant Na<sup>+</sup> migration channels, and high working voltage, though higher energy densities are sought for commercial applications. This study enhances energy density by activating multi-electron reactions through the partial substitution of V<sup>4+</sup> and dangling O<sup>2−</sup> with Fe<sup>3+</sup> and F⁻, respectively, using a straightforward hydrothermal method. This substitution successfully activates the V<sup>3+</sup>/V<sup>4+</sup> redox couple, facilitating multi-electron reactions. The modified cathode, Na₃(VO)<sub>1.8</sub>Fe<sub>0.2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>1.2</sub> (N(VO)<sub>1.8</sub>Fe<sub>0.2</sub>PF<sub>1.2</sub>), exhibits a reversible specific capacity of 213.3 mAh g<sup>−1</sup> at 50 mA g<sup>−1</sup>. Characterization techniques, including in situ X-ray diffraction and <em>ex-situ</em> X-ray photoelectron spectroscopy, confirm that the activated V<sup>3+</sup>/V<sup>4+</sup> redox reaction proceeds via a solid-solution mechanism. Density functional theory analysis suggests that Na<sub>3</sub>(VO)<sub>1.8</sub>Fe<sub>0.2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>1.2</sub> offers improved electronic conductivity and structural stability, elucidating the origins of low Na<sup>+</sup> migration energy barriers and ideal diffusion kinetics. When paired with a hard carbon (HC) anode, the full cell (HC//N(VO)<sub>1.8</sub>Fe<sub>0.2</sub>PF<sub>1.2</sub>) achieves a reversible capacity of 196.6 mAh g<sup>−1</sup> and an energy density of 287.0 Wh kg<sup>−1</sup> at 50 mA g<sup>−1</sup>, demonstrating exceptional long-term cyclic stability with a capacity retention of 94.7% after 200 cycles at 500 mA g<sup>−1</sup>. This study opens new avenues for the commercial application of sodium-ion batteries (SIBs) cathodes.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"19 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103960","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Na3(VO)2(PO4)2F cathode has garnered extensive interest for its stable structure, abundant Na+ migration channels, and high working voltage, though higher energy densities are sought for commercial applications. This study enhances energy density by activating multi-electron reactions through the partial substitution of V4+ and dangling O2− with Fe3+ and F⁻, respectively, using a straightforward hydrothermal method. This substitution successfully activates the V3+/V4+ redox couple, facilitating multi-electron reactions. The modified cathode, Na₃(VO)1.8Fe0.2(PO4)2F1.2 (N(VO)1.8Fe0.2PF1.2), exhibits a reversible specific capacity of 213.3 mAh g−1 at 50 mA g−1. Characterization techniques, including in situ X-ray diffraction and ex-situ X-ray photoelectron spectroscopy, confirm that the activated V3+/V4+ redox reaction proceeds via a solid-solution mechanism. Density functional theory analysis suggests that Na3(VO)1.8Fe0.2(PO4)2F1.2 offers improved electronic conductivity and structural stability, elucidating the origins of low Na+ migration energy barriers and ideal diffusion kinetics. When paired with a hard carbon (HC) anode, the full cell (HC//N(VO)1.8Fe0.2PF1.2) achieves a reversible capacity of 196.6 mAh g−1 and an energy density of 287.0 Wh kg−1 at 50 mA g−1, demonstrating exceptional long-term cyclic stability with a capacity retention of 94.7% after 200 cycles at 500 mA g−1. This study opens new avenues for the commercial application of sodium-ion batteries (SIBs) cathodes.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.