Activating reversible multi-electron reaction of Na3(VO)2(PO4)2F cathode via Fe/F dual-doping for high-energy and stable sodium storage

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-12-14 DOI:10.1016/j.ensm.2024.103960
Qiang Fu, Fangxiang Song, Changhui Mu, Qingqing Wu, Keliang Wang, Song Li, Xianquan Ao
{"title":"Activating reversible multi-electron reaction of Na3(VO)2(PO4)2F cathode via Fe/F dual-doping for high-energy and stable sodium storage","authors":"Qiang Fu, Fangxiang Song, Changhui Mu, Qingqing Wu, Keliang Wang, Song Li, Xianquan Ao","doi":"10.1016/j.ensm.2024.103960","DOIUrl":null,"url":null,"abstract":"Na<sub>3</sub>(VO)<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F cathode has garnered extensive interest for its stable structure, abundant Na<sup>+</sup> migration channels, and high working voltage, though higher energy densities are sought for commercial applications. This study enhances energy density by activating multi-electron reactions through the partial substitution of V<sup>4+</sup> and dangling O<sup>2−</sup> with Fe<sup>3+</sup> and F⁻, respectively, using a straightforward hydrothermal method. This substitution successfully activates the V<sup>3+</sup>/V<sup>4+</sup> redox couple, facilitating multi-electron reactions. The modified cathode, Na₃(VO)<sub>1.8</sub>Fe<sub>0.2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>1.2</sub> (N(VO)<sub>1.8</sub>Fe<sub>0.2</sub>PF<sub>1.2</sub>), exhibits a reversible specific capacity of 213.3 mAh g<sup>−1</sup> at 50 mA g<sup>−1</sup>. Characterization techniques, including in situ X-ray diffraction and <em>ex-situ</em> X-ray photoelectron spectroscopy, confirm that the activated V<sup>3+</sup>/V<sup>4+</sup> redox reaction proceeds via a solid-solution mechanism. Density functional theory analysis suggests that Na<sub>3</sub>(VO)<sub>1.8</sub>Fe<sub>0.2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>1.2</sub> offers improved electronic conductivity and structural stability, elucidating the origins of low Na<sup>+</sup> migration energy barriers and ideal diffusion kinetics. When paired with a hard carbon (HC) anode, the full cell (HC//N(VO)<sub>1.8</sub>Fe<sub>0.2</sub>PF<sub>1.2</sub>) achieves a reversible capacity of 196.6 mAh g<sup>−1</sup> and an energy density of 287.0 Wh kg<sup>−1</sup> at 50 mA g<sup>−1</sup>, demonstrating exceptional long-term cyclic stability with a capacity retention of 94.7% after 200 cycles at 500 mA g<sup>−1</sup>. This study opens new avenues for the commercial application of sodium-ion batteries (SIBs) cathodes.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"19 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103960","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Na3(VO)2(PO4)2F cathode has garnered extensive interest for its stable structure, abundant Na+ migration channels, and high working voltage, though higher energy densities are sought for commercial applications. This study enhances energy density by activating multi-electron reactions through the partial substitution of V4+ and dangling O2− with Fe3+ and F⁻, respectively, using a straightforward hydrothermal method. This substitution successfully activates the V3+/V4+ redox couple, facilitating multi-electron reactions. The modified cathode, Na₃(VO)1.8Fe0.2(PO4)2F1.2 (N(VO)1.8Fe0.2PF1.2), exhibits a reversible specific capacity of 213.3 mAh g−1 at 50 mA g−1. Characterization techniques, including in situ X-ray diffraction and ex-situ X-ray photoelectron spectroscopy, confirm that the activated V3+/V4+ redox reaction proceeds via a solid-solution mechanism. Density functional theory analysis suggests that Na3(VO)1.8Fe0.2(PO4)2F1.2 offers improved electronic conductivity and structural stability, elucidating the origins of low Na+ migration energy barriers and ideal diffusion kinetics. When paired with a hard carbon (HC) anode, the full cell (HC//N(VO)1.8Fe0.2PF1.2) achieves a reversible capacity of 196.6 mAh g−1 and an energy density of 287.0 Wh kg−1 at 50 mA g−1, demonstrating exceptional long-term cyclic stability with a capacity retention of 94.7% after 200 cycles at 500 mA g−1. This study opens new avenues for the commercial application of sodium-ion batteries (SIBs) cathodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Trace high-valence ions induced surface coherent phase stabilized high voltage LiCoO2 Suppressing Organic Cation Reactivity in Locally Concentrated Ionic Liquid Electrolytes for Lithium Metal Batteries Boosted Capacity and Stability of Aqueous Iron-Sulfur Battery using DMSO as an Electrolyte Additive Electrothermally tailored lithiophilic Co/CoxOy@porous graphite composites for high-performance Li-ion/metal hybrid batteries Activating reversible multi-electron reaction of Na3(VO)2(PO4)2F cathode via Fe/F dual-doping for high-energy and stable sodium storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1