Temperature-Compensated Humidity Sensor Based on Hole-Assisted Three-Core Fiber

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Photonics Technology Letters Pub Date : 2024-12-05 DOI:10.1109/LPT.2024.3512178
Can Yang;Jing Yang;Shan Gao;Yao Bai;Guopei Mao;Zheng Zhu;Jinhui Shi;Jun Yang;Libo Yuan;Chunying Guan
{"title":"Temperature-Compensated Humidity Sensor Based on Hole-Assisted Three-Core Fiber","authors":"Can Yang;Jing Yang;Shan Gao;Yao Bai;Guopei Mao;Zheng Zhu;Jinhui Shi;Jun Yang;Libo Yuan;Chunying Guan","doi":"10.1109/LPT.2024.3512178","DOIUrl":null,"url":null,"abstract":"A temperature-compensated humidity sensor based on hole-assisted three-core fiber (HATCF) has been demonstrated. The three cores of HATCF act as two in-fiber directional couplers with a common communal direct-passing arm. The simultaneous measurement of temperature and humidity is achieved by integrating the refractive index matching solution and agarose film into the two in-fiber directional couplers respectively. The measured temperature and RH sensitivities are 3.399 nm/°C and 0.043 nm/%RH, respectively. Due to the capability of temperature compensation, the proposed sensor has the potential to be used for high precision humidity measurement.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 2","pages":"77-80"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10778644/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A temperature-compensated humidity sensor based on hole-assisted three-core fiber (HATCF) has been demonstrated. The three cores of HATCF act as two in-fiber directional couplers with a common communal direct-passing arm. The simultaneous measurement of temperature and humidity is achieved by integrating the refractive index matching solution and agarose film into the two in-fiber directional couplers respectively. The measured temperature and RH sensitivities are 3.399 nm/°C and 0.043 nm/%RH, respectively. Due to the capability of temperature compensation, the proposed sensor has the potential to be used for high precision humidity measurement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于孔辅助三芯光纤(HATCF)的温度补偿湿度传感器已经得到验证。HATCF 的三个纤芯充当两个光纤内定向耦合器,具有一个共用直通臂。通过将折射率匹配溶液和琼脂糖薄膜分别集成到两个光纤内定向耦合器中,实现了温度和湿度的同步测量。测得的温度和湿度灵敏度分别为 3.399 nm/°C和 0.043 nm/%RH。由于具有温度补偿功能,该传感器有望用于高精度湿度测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
期刊最新文献
Dual-Band Photonic Filters With Wide Tunable Range Using Chirped Sampled Gratings 150 MHz, All-Polarization-Maintaining Fiber Integrated Figure-9 Femtosecond Laser Classical and Quantum Experiments Using Hybrid Si3N₄-LiNbO₃ Photonic Chip Innovative Photocurable Resin-Based Cylindrical Microlens Fiber for Silicon Photonics Coupling Improving the Beam Quality in a High-Power Femtosecond All-Fiber System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1