Decision Guided Robust DL Classification of Adversarial Images Combining Weaker Defenses

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Emerging and Selected Topics in Circuits and Systems Pub Date : 2024-11-13 DOI:10.1109/JETCAS.2024.3497295
Shubhajit Datta;Manaar Alam;Arijit Mondal;Debdeep Mukhopadhyay;Partha Pratim Chakrabarti
{"title":"Decision Guided Robust DL Classification of Adversarial Images Combining Weaker Defenses","authors":"Shubhajit Datta;Manaar Alam;Arijit Mondal;Debdeep Mukhopadhyay;Partha Pratim Chakrabarti","doi":"10.1109/JETCAS.2024.3497295","DOIUrl":null,"url":null,"abstract":"Adversarial examples make Deep Learning (DL) models vulnerable to safe deployment in practical systems. Although several techniques have been proposed in the literature, defending against adversarial attacks is still challenging. The current work identifies weaknesses of traditional strategies in detecting and classifying adversarial examples. To overcome these limitations, we carefully analyze techniques like binary detector and ensemble method, and compose them in a manner which mitigates the limitations. We also effectively develop a re-attack strategy, a randomization technique called RRP (Random Resizing and Patch-removing), and a rule-based decision method. Our proposed method, BEARR (Binary detector with Ensemble and re-Attacking scheme including Randomization and Rule-based decision technique) detects adversarial examples as well as classifies those examples with a higher accuracy compared to contemporary methods. We evaluate BEARR on standard image classification datasets: CIFAR-10, CIFAR-100, and tiny-imagenet as well as two real-world datasets: plantvillage and chest X-ray in the presence of state-of-the-art adversarial attack techniques. We have also validated BEARR against a more potent attacker who has perfect knowledge of the protection mechanism. We observe that BEARR is significantly better than existing methods in the context of detection and classification accuracy of adversarial examples.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 4","pages":"758-772"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10752684/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Adversarial examples make Deep Learning (DL) models vulnerable to safe deployment in practical systems. Although several techniques have been proposed in the literature, defending against adversarial attacks is still challenging. The current work identifies weaknesses of traditional strategies in detecting and classifying adversarial examples. To overcome these limitations, we carefully analyze techniques like binary detector and ensemble method, and compose them in a manner which mitigates the limitations. We also effectively develop a re-attack strategy, a randomization technique called RRP (Random Resizing and Patch-removing), and a rule-based decision method. Our proposed method, BEARR (Binary detector with Ensemble and re-Attacking scheme including Randomization and Rule-based decision technique) detects adversarial examples as well as classifies those examples with a higher accuracy compared to contemporary methods. We evaluate BEARR on standard image classification datasets: CIFAR-10, CIFAR-100, and tiny-imagenet as well as two real-world datasets: plantvillage and chest X-ray in the presence of state-of-the-art adversarial attack techniques. We have also validated BEARR against a more potent attacker who has perfect knowledge of the protection mechanism. We observe that BEARR is significantly better than existing methods in the context of detection and classification accuracy of adversarial examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
决策引导下结合弱防御的对抗图像鲁棒深度学习分类
对抗性示例使深度学习(DL)模型容易在实际系统中安全部署。尽管文献中提出了几种技术,但防御对抗性攻击仍然具有挑战性。目前的工作确定了传统策略在检测和分类对抗示例方面的弱点。为了克服这些限制,我们仔细分析了二进制探测器和集成方法等技术,并以减轻限制的方式组合它们。我们还有效地开发了一种重新攻击策略,一种称为RRP(随机调整大小和补丁删除)的随机化技术,以及一种基于规则的决策方法。我们提出的方法BEARR(具有集成和重新攻击方案的二进制检测器,包括随机化和基于规则的决策技术)检测对抗性示例,并对这些示例进行分类,与当前方法相比具有更高的准确性。我们在标准图像分类数据集(CIFAR-10、CIFAR-100和tiny-imagenet)以及两个真实世界数据集(plantvillage和胸部x射线)上对bear进行了评估,并采用了最先进的对抗性攻击技术。我们还针对一个更强大的攻击者验证了BEARR,该攻击者对保护机制有着完美的了解。我们观察到,在对抗性样本的检测和分类精度方面,BEARR明显优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
期刊最新文献
Introducing IEEE Collabratec Table of Contents Erratum to “A Reconfigurable Spatial Architecture for Energy-Efficient Inception Neural Networks” Guest Editorial: Toward Trustworthy AI: Advances in Circuits, Systems, and Applications IEEE Journal on Emerging and Selected Topics in Circuits and Systems Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1