Local Linear Convergence of Infeasible Optimization With Orthogonal Constraints

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-09 DOI:10.1109/LCSYS.2024.3513817
Youbang Sun;Shixiang Chen;Alfredo Garcia;Shahin Shahrampour
{"title":"Local Linear Convergence of Infeasible Optimization With Orthogonal Constraints","authors":"Youbang Sun;Shixiang Chen;Alfredo Garcia;Shahin Shahrampour","doi":"10.1109/LCSYS.2024.3513817","DOIUrl":null,"url":null,"abstract":"Many classical and modern machine learning algorithms require solving optimization tasks under orthogonality constraints. Solving these tasks with feasible methods requires a gradient descent update followed by a retraction operation on the Stiefel manifold, which can be computationally expensive. Recently, an infeasible retraction-free approach, termed the landing algorithm, was proposed as an efficient alternative. Motivated by the common occurrence of orthogonality constraints in tasks such as principle component analysis and training of deep neural networks, this letter studies the landing algorithm and establishes a novel linear convergence rate for smooth non-convex functions using only a local Riemannian PŁ condition. Numerical experiments demonstrate that the landing algorithm performs on par with the state-of-the-art retraction-based methods with substantially reduced computational overhead.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2727-2732"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10786380/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Many classical and modern machine learning algorithms require solving optimization tasks under orthogonality constraints. Solving these tasks with feasible methods requires a gradient descent update followed by a retraction operation on the Stiefel manifold, which can be computationally expensive. Recently, an infeasible retraction-free approach, termed the landing algorithm, was proposed as an efficient alternative. Motivated by the common occurrence of orthogonality constraints in tasks such as principle component analysis and training of deep neural networks, this letter studies the landing algorithm and establishes a novel linear convergence rate for smooth non-convex functions using only a local Riemannian PŁ condition. Numerical experiments demonstrate that the landing algorithm performs on par with the state-of-the-art retraction-based methods with substantially reduced computational overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有正交约束条件的不可行优化的局部线性收敛性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Safety Verification of Stochastic Systems: A Set-Erosion Approach Quadrotor Fault-Tolerant Control at High Speed: A Model-Based Extended State Observer for Mismatched Disturbance Rejection Approach Kernelized Offset-Free Data-Driven Predictive Control for Nonlinear Systems Optimal Layout Co-Design in Hybrid Battery Packs for Electric Racing Cars Traffic Density Control for Heterogeneous Highway Systems With Input Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1