Targeting Neuroinflammation and Apoptosis: Cardamonin’s Cognitive Benefits in Alzheimer’s 5XFAD Mice

IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Neurochemical Research Pub Date : 2024-12-14 DOI:10.1007/s11064-024-04308-4
Shukur Wasman Smail
{"title":"Targeting Neuroinflammation and Apoptosis: Cardamonin’s Cognitive Benefits in Alzheimer’s 5XFAD Mice","authors":"Shukur Wasman Smail","doi":"10.1007/s11064-024-04308-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to evaluate the cognitive-enhancing and neuroprotective effects of cardamonin in the 5XFAD transgenic mouse model of Alzheimer’s disease (AD). We treated six-month-old female 5XFAD mice with cardamonin at 5 mg/kg, 10 mg/kg, and 20 mg/kg. Cognitive function was assessed using the Morris Water Maze (MWM) and Novel Object Recognition (NOR) tests. ELISA, western blot, and PCR analyses evaluated amyloid-beta (Aβ) levels, neuroinflammation markers, and apoptosis-related factor expression. All animals survived without toxicity. Cardamonin treatment significantly improved spatial learning and memory retention in MWM and NOR tests, with the 20 mg/kg dose showing the most pronounced effects. Additionally, cardamonin reduced soluble and insoluble Aβ levels in the frontal cortex and hippocampus. The treatment also significantly decreased neuroinflammatory markers, with IL-1β, IL-6, and TNF-α levels dropping substantially at higher doses. Cardamom treatment also normalizes cleaved caspase 3, GFAP, Iba-1, PSD-95, and synaptophysin, which aids in restoring synaptic integrity. Furthermore, cardamonin led to a marked reduction in apoptosis-related gene expression, indicating its potential to mitigate neurodegeneration. Cardamonin demonstrates significant cognitive-enhancing and neuroprotective properties in the 5XFAD mouse model, suggesting its potential as a therapeutic agent for AD. These findings support further investigation into cardamonin’s mechanisms and applicability in treating neurodegenerative disorders.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-024-04308-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to evaluate the cognitive-enhancing and neuroprotective effects of cardamonin in the 5XFAD transgenic mouse model of Alzheimer’s disease (AD). We treated six-month-old female 5XFAD mice with cardamonin at 5 mg/kg, 10 mg/kg, and 20 mg/kg. Cognitive function was assessed using the Morris Water Maze (MWM) and Novel Object Recognition (NOR) tests. ELISA, western blot, and PCR analyses evaluated amyloid-beta (Aβ) levels, neuroinflammation markers, and apoptosis-related factor expression. All animals survived without toxicity. Cardamonin treatment significantly improved spatial learning and memory retention in MWM and NOR tests, with the 20 mg/kg dose showing the most pronounced effects. Additionally, cardamonin reduced soluble and insoluble Aβ levels in the frontal cortex and hippocampus. The treatment also significantly decreased neuroinflammatory markers, with IL-1β, IL-6, and TNF-α levels dropping substantially at higher doses. Cardamom treatment also normalizes cleaved caspase 3, GFAP, Iba-1, PSD-95, and synaptophysin, which aids in restoring synaptic integrity. Furthermore, cardamonin led to a marked reduction in apoptosis-related gene expression, indicating its potential to mitigate neurodegeneration. Cardamonin demonstrates significant cognitive-enhancing and neuroprotective properties in the 5XFAD mouse model, suggesting its potential as a therapeutic agent for AD. These findings support further investigation into cardamonin’s mechanisms and applicability in treating neurodegenerative disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对神经炎症和细胞凋亡:豆蔻宁对阿尔茨海默氏症 5XFAD 小鼠认知能力的益处
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurochemical Research
Neurochemical Research 医学-神经科学
CiteScore
7.70
自引率
2.30%
发文量
320
审稿时长
6 months
期刊介绍: Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.
期刊最新文献
Correction: 4,5-Dimethoxycanthin-6-one Inhibits Glioblastoma Stem Cell and Tumor Growth by Inhibiting TSPAN1 Interaction with TM4SF1 TAG-1 Regulates NRP1 in Schwann Cells and Participates in Regulating Nerve Regeneration in Rats with Sciatic Nerve Crush Injury Neuroinflammatory Response in the Traumatic Brain Injury: An Update Correction: NL-1 Promotes PINK1-Parkin-Mediated Mitophagy Through MitoNEET Inhibition in Subarachnoid Hemorrhage Targeting Neuroinflammation and Apoptosis: Cardamonin’s Cognitive Benefits in Alzheimer’s 5XFAD Mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1