Bragg resonance in a two-layer fluid with the inclusion of current and tension at both surface and interface

IF 2.2 3区 工程技术 Q2 MECHANICS Archive of Applied Mechanics Pub Date : 2024-12-14 DOI:10.1007/s00419-024-02737-9
Akshita Aggarwal, S. K. Mohanty, S. C. Martha
{"title":"Bragg resonance in a two-layer fluid with the inclusion of current and tension at both surface and interface","authors":"Akshita Aggarwal,&nbsp;S. K. Mohanty,&nbsp;S. C. Martha","doi":"10.1007/s00419-024-02737-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the scattering of water waves by an undulating bottom in a two-layer fluid with current, surface tension, and interfacial tension is investigated. The perturbation technique followed by the Fourier transform technique are applied to solve the coupled boundary value problem. A Bragg resonance arises between the surface waves and the bottom ripples, which is associated with the reflection of incident wave energy. Hence, the Bragg coefficients namely, Bragg reflection and transmission coefficients, and associated velocity potentials are analysed which are obtained in integral forms. In order to clearly understand the efficacy of the present study, a certain type of undulating bottom, known as sinusoidal bottom undulation, has been examined. It has been shown that when the combined effects of surface tension, interfacial tension, and current are taken into account, the wave reflection is minimal. Moreover, a shift in the Bragg resonant frequency is seen with a change in current speed. In addition, interfacial tension influences both surface and interfacial waves, whereas surface tension primarily impacts surface waves. The results obtained here are expected to be qualitatively helpful in tackling problems of flexural gravity waves in two-layer fluid in the presence of current.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02737-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the scattering of water waves by an undulating bottom in a two-layer fluid with current, surface tension, and interfacial tension is investigated. The perturbation technique followed by the Fourier transform technique are applied to solve the coupled boundary value problem. A Bragg resonance arises between the surface waves and the bottom ripples, which is associated with the reflection of incident wave energy. Hence, the Bragg coefficients namely, Bragg reflection and transmission coefficients, and associated velocity potentials are analysed which are obtained in integral forms. In order to clearly understand the efficacy of the present study, a certain type of undulating bottom, known as sinusoidal bottom undulation, has been examined. It has been shown that when the combined effects of surface tension, interfacial tension, and current are taken into account, the wave reflection is minimal. Moreover, a shift in the Bragg resonant frequency is seen with a change in current speed. In addition, interfacial tension influences both surface and interfacial waves, whereas surface tension primarily impacts surface waves. The results obtained here are expected to be qualitatively helpful in tackling problems of flexural gravity waves in two-layer fluid in the presence of current.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双层流体中的布拉格共振,表面和界面均包含电流和张力
本研究探讨了具有水流、表面张力和界面张力的双层流体中起伏底部对水波的散射。应用扰动技术和傅立叶变换技术求解了耦合边界值问题。表面波和底部波纹之间产生了布拉格共振,这与入射波能的反射有关。因此,对布拉格系数(即布拉格反射系数和透射系数)和相关速度势进行了分析,并以积分形式得到了结果。为了清楚地了解本研究的功效,我们研究了某种类型的起伏海底,即正弦波海底起伏。结果表明,当考虑到表面张力、界面张力和水流的综合影响时,波的反射是最小的。此外,随着电流速度的变化,布拉格共振频率也会发生变化。此外,界面张力同时影响表面波和界面波,而表面张力主要影响表面波。本文所获得的结果有望为解决有电流存在时两层流体中的挠曲重力波问题提供定性帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
10.70%
发文量
234
审稿时长
4-8 weeks
期刊介绍: Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.
期刊最新文献
Symplectic superposition solution for the buckling problem of orthotropic rectangular plates with four clamped edges Influence of CNTs distributions on three-dimensional vibration of sandwich plates with functionally-graded face sheets Fractional-order rate-dependent porous-thermo-elasticity model based on new fractional derivatives with non-singular kernels and 1D transient dynamic response analysis of magnesium-based porous half-space with voids Modelling and stability analysis of the permanent magnetic bearing-rotor system under base excitation Series solutions for free in-plane vibration of composite plates with arbitrary shape
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1