Infinite order linear difference equation satisfied by a refinement of Goss zeta function

Su Hu, Min-Soo Kim
{"title":"Infinite order linear difference equation satisfied by a refinement of Goss zeta function","authors":"Su Hu,&nbsp;Min-Soo Kim","doi":"10.1007/s12188-024-00284-2","DOIUrl":null,"url":null,"abstract":"<div><p>At the international congress of mathematicians in 1900, Hilbert claimed that the Riemann zeta function <span>\\(\\zeta (s)\\)</span> is not the solution of any algebraic ordinary differential equations on its region of analyticity. Let <i>T</i> be an infinite order linear differential operator introduced by Van Gorder in 2015. Recently, Prado and Klinger-Logan [9] showed that the Hurwitz zeta function <span>\\(\\zeta (s,a)\\)</span> formally satisfies the following linear differential equation </p><div><div><span>$$\\begin{aligned} T\\left[ \\zeta (s,a) - \\frac{1}{a^s}\\right] = \\frac{1}{(s-1)a^{s-1}}. \\end{aligned}$$</span></div></div><p>Then in [6], by defining <span>\\(T_{p}^{a}\\)</span>, a <i>p</i>-adic analogue of Van Gorder’s operator <i>T</i>,  we constructed the following convergent infinite order linear differential equation satisfied by the <i>p</i>-adic Hurwitz-type Euler zeta function <span>\\(\\zeta _{p,E}(s,a)\\)</span></p><div><div><span>$$\\begin{aligned} T_{p}^{a}\\left[ \\zeta _{p,E}(s,a)-\\langle a\\rangle ^{1-s}\\right] =\\frac{1}{s-1}\\left( \\langle a-1 \\rangle ^{1-s}-\\langle a\\rangle ^{1-s}\\right) . \\end{aligned}$$</span></div></div><p>In this paper, we consider this problem in the positive characteristic case. That is, by introducing <span>\\(\\zeta _{\\infty }(s_{0},s,a,n)\\)</span>, a Hurwitz type refinement of Goss zeta function, and an infinite order linear difference operator <i>L</i>, we establish the following difference equation </p><div><div><span>$$\\begin{aligned} L\\left[ \\zeta _{\\infty }\\left( \\frac{1}{T},s,a,0\\right) \\right] =\\sum _{\\gamma \\in \\mathbb {F}_{q}} \\frac{1}{\\langle a+\\gamma \\rangle ^{s}}. \\end{aligned}$$</span></div></div></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 2","pages":"129 - 143"},"PeriodicalIF":0.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-024-00284-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

At the international congress of mathematicians in 1900, Hilbert claimed that the Riemann zeta function \(\zeta (s)\) is not the solution of any algebraic ordinary differential equations on its region of analyticity. Let T be an infinite order linear differential operator introduced by Van Gorder in 2015. Recently, Prado and Klinger-Logan [9] showed that the Hurwitz zeta function \(\zeta (s,a)\) formally satisfies the following linear differential equation

$$\begin{aligned} T\left[ \zeta (s,a) - \frac{1}{a^s}\right] = \frac{1}{(s-1)a^{s-1}}. \end{aligned}$$

Then in [6], by defining \(T_{p}^{a}\), a p-adic analogue of Van Gorder’s operator T,  we constructed the following convergent infinite order linear differential equation satisfied by the p-adic Hurwitz-type Euler zeta function \(\zeta _{p,E}(s,a)\)

$$\begin{aligned} T_{p}^{a}\left[ \zeta _{p,E}(s,a)-\langle a\rangle ^{1-s}\right] =\frac{1}{s-1}\left( \langle a-1 \rangle ^{1-s}-\langle a\rangle ^{1-s}\right) . \end{aligned}$$

In this paper, we consider this problem in the positive characteristic case. That is, by introducing \(\zeta _{\infty }(s_{0},s,a,n)\), a Hurwitz type refinement of Goss zeta function, and an infinite order linear difference operator L, we establish the following difference equation

$$\begin{aligned} L\left[ \zeta _{\infty }\left( \frac{1}{T},s,a,0\right) \right] =\sum _{\gamma \in \mathbb {F}_{q}} \frac{1}{\langle a+\gamma \rangle ^{s}}. \end{aligned}$$
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由 Goss Zeta 函数细化满足的无穷阶线性差分方程
在1900年的国际数学家大会上,希尔伯特声称黎曼zeta函数(\zeta (s)\)不是其解析区域上任何代数常微分方程的解。假设 T 是 Van Gorder 于 2015 年引入的无穷阶线性微分算子。最近,Prado 和 Klinger-Logan [9] 证明了 Hurwitz zeta 函数 \(\zeta (s,a)\) 正式满足下面的线性微分方程 $$\begin{aligned}T\left[ \zeta (s,a) - \frac{1}{a^s}\right] = \frac{1}{(s-1)a^{s-1}}。\end{aligned}$$Then in [6], by defining \(T_{p}^{a}\), a p-adic analogue of Van Gorder's operator T, we constructed the following convergent infinite order linear differential equation satisfied by the p-adic Hurwitz-type Euler zeta function \(\zeta _{p,E}(s,a)\)$$\begin{aligned}.T_{p}^{a}\left[ \zeta _{p,E}(s,a)-\langle a\rangle ^{1-s}\right] =\frac{1}{s-1}\left( \langle a-1 \rangle ^{1-s}-\langle a\rangle ^{1-s}\right) .\end{aligned}$$ 在本文中,我们考虑的是正特征情况下的问题。也就是说,通过引入 \(\zeta _\infty }(s_{0},s,a,n)\), Goss zeta 函数的 Hurwitz 型细化,以及无穷阶线性差分算子 L,我们建立了下面的差分方程 $$\begin{aligned}L\left[ \zeta _{\infty }\left( \frac{1}{T},s,a,0\right) \right] =sum _{\gamma \in \mathbb {F}_{q}}\frac{1}{langle a+\gamma\rangle ^{s}}.\end{aligned}$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
期刊最新文献
Continued fractions and Hardy sums Infinite order linear difference equation satisfied by a refinement of Goss zeta function Representations of large Mackey Lie algebras and universal tensor categories On Ramanujan expansions and primes in arithmetic progressions A Fourier analysis of quadratic Riemann sums and Local integrals of \(\varvec{\zeta (s)}\)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1