Mansoor A. Najeeb, Robbie Morrison, Ahmed H. Mokhtar, Daniel G. Porter, Frank Lichtenberg, Alessandro Bombardi, Marcus C. Newton
{"title":"Imaging of electric-field-induced domain structure in DyMnO\\(_{3}\\) nanocrystals","authors":"Mansoor A. Najeeb, Robbie Morrison, Ahmed H. Mokhtar, Daniel G. Porter, Frank Lichtenberg, Alessandro Bombardi, Marcus C. Newton","doi":"10.1186/s11671-024-04165-8","DOIUrl":null,"url":null,"abstract":"<div><p>Multiferroic materials that exhibit interacting and coexisting properties, like ferroelectricity and ferromagnetism, possess significant potential in the development of novel technologies that can be controlled through the application of external fields. They also exhibit varying regions of polarity, known as domains, with the interfaces that separate the domains referred to as domain walls. In this study, using three-dimensional (3D) bragg coherent diffractive imaging (BCDI), we investigate the dynamics of multiferroic domain walls in a single hexagonal dysprosium manganite (h-DyMnO<span>\\(_3\\)</span>) nanocrystal under varying applied electric field. Our analysis reveals that domain wall motion is influenced by the pinning effects, and a threshold voltage of +3 V is required to overcome them. Using circular mean analysis and phase gradient mapping, we identified localised phase realignment and high-gradient regions corresponding to domain walls, providing insights into the behaviour of multiferroic systems under external stimuli.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04165-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04165-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiferroic materials that exhibit interacting and coexisting properties, like ferroelectricity and ferromagnetism, possess significant potential in the development of novel technologies that can be controlled through the application of external fields. They also exhibit varying regions of polarity, known as domains, with the interfaces that separate the domains referred to as domain walls. In this study, using three-dimensional (3D) bragg coherent diffractive imaging (BCDI), we investigate the dynamics of multiferroic domain walls in a single hexagonal dysprosium manganite (h-DyMnO\(_3\)) nanocrystal under varying applied electric field. Our analysis reveals that domain wall motion is influenced by the pinning effects, and a threshold voltage of +3 V is required to overcome them. Using circular mean analysis and phase gradient mapping, we identified localised phase realignment and high-gradient regions corresponding to domain walls, providing insights into the behaviour of multiferroic systems under external stimuli.
多铁性材料具有铁电性和铁磁性等相互作用和共存的特性,在开发可通过应用外场进行控制的新型技术方面具有巨大潜力。它们还表现出不同的极性区域,称为畴,分隔畴的界面称为畴壁。在本研究中,我们利用三维(3D)布拉格相干衍射成像(BCDI)技术,研究了单个六方镝锰矿(h-DyMnO/(_3\))纳米晶体中的多铁素体畴壁在变化的外加电场下的动态。我们的分析表明,畴壁运动受到针销效应的影响,需要 +3 V 的阈值电压才能克服针销效应。利用圆均值分析和相位梯度绘图,我们确定了与畴壁相对应的局部相位重新调整和高梯度区域,为了解多铁氧体系统在外部刺激下的行为提供了见解。
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.