Document-level relation extraction via commonsense knowledge enhanced graph representation learning

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2024-12-14 DOI:10.1007/s10489-024-05985-y
Qizhu Dai, Rongzhen Li, Zhongxuan Xue, Xue Li, Jiang Zhong
{"title":"Document-level relation extraction via commonsense knowledge enhanced graph representation learning","authors":"Qizhu Dai,&nbsp;Rongzhen Li,&nbsp;Zhongxuan Xue,&nbsp;Xue Li,&nbsp;Jiang Zhong","doi":"10.1007/s10489-024-05985-y","DOIUrl":null,"url":null,"abstract":"<div><p>Document-level relation extraction (DocRE) aims to reason about complex relational facts among entities by reading, inferring, and aggregating among entities over multiple sentences in a document. Existing studies construct document-level graphs to enrich interactions between entities. However, these methods pay more attention to the entity nodes and their connections, regardless of the rich knowledge entailed in the original corpus.In this paper, we propose a commonsense knowledge enhanced document-level graph representation, called CGDRE, which delves into the semantic knowledge of the original corpus and improves the ability of DocRE. Firstly, we use coreference contrastive learning to capture potential commonsense knowledge. Secondly, we construct a heterogeneous graph to enhance the graph structure information according to the original document and commonsense knowledge. Lastly, CGDRE infers relations on the aggregated graph and uses focal loss to train the model. Remarkably, it is amazing that CGDRE can effectively alleviate the long-tailed distribution problem in DocRE. Experiments on the public datasets DocRED, DialogRE, and MPDD show that CGDRE can significantly outperform other baselines, achieving a significant performance improvement. Extensive analyses demonstrate that the performance of our CGDRE is contributed by the capture of commonsense knowledge enhanced graph relation representation.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05985-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Document-level relation extraction (DocRE) aims to reason about complex relational facts among entities by reading, inferring, and aggregating among entities over multiple sentences in a document. Existing studies construct document-level graphs to enrich interactions between entities. However, these methods pay more attention to the entity nodes and their connections, regardless of the rich knowledge entailed in the original corpus.In this paper, we propose a commonsense knowledge enhanced document-level graph representation, called CGDRE, which delves into the semantic knowledge of the original corpus and improves the ability of DocRE. Firstly, we use coreference contrastive learning to capture potential commonsense knowledge. Secondly, we construct a heterogeneous graph to enhance the graph structure information according to the original document and commonsense knowledge. Lastly, CGDRE infers relations on the aggregated graph and uses focal loss to train the model. Remarkably, it is amazing that CGDRE can effectively alleviate the long-tailed distribution problem in DocRE. Experiments on the public datasets DocRED, DialogRE, and MPDD show that CGDRE can significantly outperform other baselines, achieving a significant performance improvement. Extensive analyses demonstrate that the performance of our CGDRE is contributed by the capture of commonsense knowledge enhanced graph relation representation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过常识性知识增强图表示学习进行文档级关系提取
文档级关系提取(Document-level relation extraction,DocRE)旨在通过对文档中多个句子的实体进行阅读、推断和聚合,推理实体间复杂的关系事实。现有研究构建了文档级图来丰富实体间的交互。本文提出了一种常识性知识增强的文档级图表示法,称为 CGDRE,它深入挖掘了原始语料的语义知识,提高了 DocRE 的能力。首先,我们使用核心参照对比学习来捕捉潜在的常识知识。其次,我们根据原始文档和常识知识构建异质图,以增强图结构信息。最后,CGDRE 在聚合图上推断关系,并使用焦点损失来训练模型。令人惊讶的是,CGDRE 可以有效缓解 DocRE 中的长尾分布问题。在公共数据集 DocRED、DialogRE 和 MPDD 上的实验表明,CGDRE 的性能明显优于其他基线,实现了显著的性能提升。广泛的分析表明,我们的 CGDRE 的性能得益于对常识知识的捕捉和增强的图关系表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
An attribute reduction algorithm using relative decision mutual information in fuzzy neighborhood decision system Efficient knowledge distillation using a shift window target-aware transformer Learning state-action correspondence across reinforcement learning control tasks via partially paired trajectories Stabilizing and improving federated learning with highly non-iid data and client dropout Short-term traffic flow prediction based on spatial–temporal attention time gated convolutional network with particle swarm optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1