{"title":"A method for determining the heat and mass transfer efficiency in a film cooling tower with intensified fill packs","authors":"A. G. Laptev, E. A. Lapteva","doi":"10.1134/S0869864324030090","DOIUrl":null,"url":null,"abstract":"<div><p>A modified method of transfer units is developed for a countercurrent film cooling tower with a structured tubular packing with surface intensifiers in order to determine the thermal efficiency of the gas and liquid phases and the temperature of the cooled water at the output. The approach of presenting the number of transfer units, taking into account additional terms with reverse mixing coefficients is applied to indirectly consider the hydrodynamic structure of flows and a decrease in the heat and mass transfer efficiency, compared with the ideal displacement model. An experimental installation with a layout (column) of a Plexiglass cooling tower with a diameter of 200 mm and a height of 2 m is described. Experimental data for water cooling in a structured packing block in the form of a vertical bundle of tightly packed polyethylene pipes with a diameter of 0.05 m with an annular discretely structured surface roughness are presented. Generalized calculated empirical expressions for the drag of dry and irrigated pipes, as well as the dependence of the volumetric mass transfer coefficient on air velocity at different irrigation densities, are obtained. The parameters of expression of the modified number of transfer units are identified based on experimental data on thermal efficiency in the gas phase. As a result, the dependence of the thermal efficiency in the gas phase on the pressure and design characteristics of the structured packing is obtained taking into account the reverse mixing of the flows. Reverse mixing is shown to reduce thermal efficiency by 8 – 15 %, which must be taken into account in the calculations of film cooling towers. The calculation results for the SK-400 industrial cooling tower using the presented expressions are provided and the agreement of the thermal efficiency of the cooling tower with the calculation according to the proposed method is shown.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 3","pages":"469 - 479"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864324030090","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
A modified method of transfer units is developed for a countercurrent film cooling tower with a structured tubular packing with surface intensifiers in order to determine the thermal efficiency of the gas and liquid phases and the temperature of the cooled water at the output. The approach of presenting the number of transfer units, taking into account additional terms with reverse mixing coefficients is applied to indirectly consider the hydrodynamic structure of flows and a decrease in the heat and mass transfer efficiency, compared with the ideal displacement model. An experimental installation with a layout (column) of a Plexiglass cooling tower with a diameter of 200 mm and a height of 2 m is described. Experimental data for water cooling in a structured packing block in the form of a vertical bundle of tightly packed polyethylene pipes with a diameter of 0.05 m with an annular discretely structured surface roughness are presented. Generalized calculated empirical expressions for the drag of dry and irrigated pipes, as well as the dependence of the volumetric mass transfer coefficient on air velocity at different irrigation densities, are obtained. The parameters of expression of the modified number of transfer units are identified based on experimental data on thermal efficiency in the gas phase. As a result, the dependence of the thermal efficiency in the gas phase on the pressure and design characteristics of the structured packing is obtained taking into account the reverse mixing of the flows. Reverse mixing is shown to reduce thermal efficiency by 8 – 15 %, which must be taken into account in the calculations of film cooling towers. The calculation results for the SK-400 industrial cooling tower using the presented expressions are provided and the agreement of the thermal efficiency of the cooling tower with the calculation according to the proposed method is shown.
期刊介绍:
The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.