Antioxidant effect, DNA-binding, and transport of the flavonoid acacetin influenced by the presence of redox-active Cu(II) ion: Spectroscopic and in silico study.
Marek Štekláč, Michal Malček, Peter Gajdoš, Simona Vevericová, Milan Čertík, Marián Valko, Vlasta Brezová, Miriama Malček Šimunková
{"title":"Antioxidant effect, DNA-binding, and transport of the flavonoid acacetin influenced by the presence of redox-active Cu(II) ion: Spectroscopic and in silico study.","authors":"Marek Štekláč, Michal Malček, Peter Gajdoš, Simona Vevericová, Milan Čertík, Marián Valko, Vlasta Brezová, Miriama Malček Šimunková","doi":"10.1016/j.jinorgbio.2024.112802","DOIUrl":null,"url":null,"abstract":"<p><p>Acacetin (AC) is a natural polyphenol from the group of flavonoids. It is well established that the behavior of flavonoids depends on the presence of redox-active substances; therefore, we aim to investigate their biological activity following the interaction with Cu(II) ion. Our study demonstrates that AC can effectively bind Cu(II) ions, as confirmed by UV-Vis and EPR spectroscopy as well as DFT calculations. AC appears as a potent scavenger against the model ABTS radical cation by itself, but this ability is significantly limited upon Cu(II) coordination. The possible mild synergistic effect of AC in the presence of vitamin C and glutathione was also shown by the ABTS<sup>•+</sup> test. In contrast, an inhibitory effect was observed in the presence of Cu(II) ions. The equimolar addition of AC to the model Fenton-like system containing Cu(II) did not have a noticeable effect on the concentration of hydroxyl radicals produced, but in its excess the formation of <sup>•</sup>OH decreased, as proved by EPR spin trapping. Absorption titrations and gel electrophoresis revealed effective binding to calf thymus (CT)-DNA with a stronger interaction for the Cu(II)-AC complex. The detailed mode of binding to biomolecules was described using molecular docking and molecular dynamics. Obtained results indicate that the double helix of DNA unwinds after interaction with the Cu(II)-AC complex. Fluorescence spectroscopy, employing human serum albumin (HSA), suggested a potential transport capacity for both AC and its Cu(II) complex.</p>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"264 ","pages":"112802"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jinorgbio.2024.112802","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acacetin (AC) is a natural polyphenol from the group of flavonoids. It is well established that the behavior of flavonoids depends on the presence of redox-active substances; therefore, we aim to investigate their biological activity following the interaction with Cu(II) ion. Our study demonstrates that AC can effectively bind Cu(II) ions, as confirmed by UV-Vis and EPR spectroscopy as well as DFT calculations. AC appears as a potent scavenger against the model ABTS radical cation by itself, but this ability is significantly limited upon Cu(II) coordination. The possible mild synergistic effect of AC in the presence of vitamin C and glutathione was also shown by the ABTS•+ test. In contrast, an inhibitory effect was observed in the presence of Cu(II) ions. The equimolar addition of AC to the model Fenton-like system containing Cu(II) did not have a noticeable effect on the concentration of hydroxyl radicals produced, but in its excess the formation of •OH decreased, as proved by EPR spin trapping. Absorption titrations and gel electrophoresis revealed effective binding to calf thymus (CT)-DNA with a stronger interaction for the Cu(II)-AC complex. The detailed mode of binding to biomolecules was described using molecular docking and molecular dynamics. Obtained results indicate that the double helix of DNA unwinds after interaction with the Cu(II)-AC complex. Fluorescence spectroscopy, employing human serum albumin (HSA), suggested a potential transport capacity for both AC and its Cu(II) complex.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.