Brice J Stolz, Ahmed A Abouelkhair, Mohamed N Seleem
{"title":"Screening novel antiviral compounds to treat Clostridioides difficile infections.","authors":"Brice J Stolz, Ahmed A Abouelkhair, Mohamed N Seleem","doi":"10.1371/journal.pone.0309624","DOIUrl":null,"url":null,"abstract":"<p><p>Clostridioides difficile is a major cause of nosocomial infections, often associated with individuals who have gut dysbiosis from previous antibiotic therapies. C. difficile infections (CDI) have a high recurrence rate and impose significant financial and mortality burdens on the healthcare system. Therefore, novel anti-C. difficile drugs are urgently needed to treat and reduce the severity and recurrence of infection. In this study, we screened a library of 618 antiviral drugs to identify a potential candidate for repurposing as novel anti-C. difficile therapeutics. Following our preliminary screening, we identified 9 novel compounds that inhibited C. difficile at a concentration of 16 μM or lower. Among these, 4 antiviral compounds demonstrated the most potent anti-C. difficile activity against a panel of 15 C. difficile isolates, with minimum inhibitory concentrations (MICs) comparable to the drug of choice, vancomycin. These include rottlerin (MIC50 = 0.25 μg/mL), α-mangostin (MIC50 = 1 μg/mL), dryocrassin ABBA (MIC50 = 1 μg/mL), and obefazimod (MIC50 = 4 μg/mL). All exhibited minimal to no activity against representative members of the human gut microbiota. Interestingly, α-mangostin, a natural xanthone derived from the mangosteen fruit, exhibited strong bactericidal action, clearing a high inoculum of C. difficile in less than an hour. All other drugs exhibited bacteriostatic activity. Given their characteristics, these compounds show great promise as novel treatments for CDI.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 12","pages":"e0309624"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0309624","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Clostridioides difficile is a major cause of nosocomial infections, often associated with individuals who have gut dysbiosis from previous antibiotic therapies. C. difficile infections (CDI) have a high recurrence rate and impose significant financial and mortality burdens on the healthcare system. Therefore, novel anti-C. difficile drugs are urgently needed to treat and reduce the severity and recurrence of infection. In this study, we screened a library of 618 antiviral drugs to identify a potential candidate for repurposing as novel anti-C. difficile therapeutics. Following our preliminary screening, we identified 9 novel compounds that inhibited C. difficile at a concentration of 16 μM or lower. Among these, 4 antiviral compounds demonstrated the most potent anti-C. difficile activity against a panel of 15 C. difficile isolates, with minimum inhibitory concentrations (MICs) comparable to the drug of choice, vancomycin. These include rottlerin (MIC50 = 0.25 μg/mL), α-mangostin (MIC50 = 1 μg/mL), dryocrassin ABBA (MIC50 = 1 μg/mL), and obefazimod (MIC50 = 4 μg/mL). All exhibited minimal to no activity against representative members of the human gut microbiota. Interestingly, α-mangostin, a natural xanthone derived from the mangosteen fruit, exhibited strong bactericidal action, clearing a high inoculum of C. difficile in less than an hour. All other drugs exhibited bacteriostatic activity. Given their characteristics, these compounds show great promise as novel treatments for CDI.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage