Hani Nejadriahi, Eric Kittlaus, Debapam Bose, Nitesh Chauhan, Jiawei Wang, Mathieu Fradet, Mahmood Bagheri, Andrei Isichenko, David Heim, Siamak Forouhar, Daniel J Blumenthal
{"title":"Sub-100 Hz intrinsic linewidth 852 nm silicon nitride external cavity laser.","authors":"Hani Nejadriahi, Eric Kittlaus, Debapam Bose, Nitesh Chauhan, Jiawei Wang, Mathieu Fradet, Mahmood Bagheri, Andrei Isichenko, David Heim, Siamak Forouhar, Daniel J Blumenthal","doi":"10.1364/OL.543307","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate an external cavity laser with intrinsic linewidth below 100 Hz around an operating wavelength of 852 nm, selected for its relevance to laser cooling and manipulation of cesium atoms. This system achieves a maximum CW output power of 24 mW, a wavelength tunability over 10 nm, and a side-mode suppression ratio exceeding 50 dB. This performance level is facilitated by careful design of a low-loss integrated silicon nitride photonic circuit serving as the external cavity combined with commercially available semiconductor gain chips. This approach demonstrates the feasibility of compact integrated lasers with sub-kHz linewidth centering on the needs of emerging sensor concepts based on ultracold atoms and can be further extended to shorter wavelengths via selection of suitable semiconductor gain media.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"7254-7257"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.543307","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate an external cavity laser with intrinsic linewidth below 100 Hz around an operating wavelength of 852 nm, selected for its relevance to laser cooling and manipulation of cesium atoms. This system achieves a maximum CW output power of 24 mW, a wavelength tunability over 10 nm, and a side-mode suppression ratio exceeding 50 dB. This performance level is facilitated by careful design of a low-loss integrated silicon nitride photonic circuit serving as the external cavity combined with commercially available semiconductor gain chips. This approach demonstrates the feasibility of compact integrated lasers with sub-kHz linewidth centering on the needs of emerging sensor concepts based on ultracold atoms and can be further extended to shorter wavelengths via selection of suitable semiconductor gain media.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.