Ultra-broadband terahertz radar imaging with a 4-in. spintronic strong-field emitter.

IF 3.1 2区 物理与天体物理 Q2 OPTICS Optics letters Pub Date : 2024-12-15 DOI:10.1364/OL.546048
Mingxuan Zhang, Jiahui Li, Shaojie Liu, Ning Leng, Zejun Ren, Zehao Yang, Xinxiong Chen, Deyin Kong, Jianghao Li, Ziyu Huang, Baolong Zhang, Caihua Wan, Ming Bai, Xiaojun Wu
{"title":"Ultra-broadband terahertz radar imaging with a 4-in. spintronic strong-field emitter.","authors":"Mingxuan Zhang, Jiahui Li, Shaojie Liu, Ning Leng, Zejun Ren, Zehao Yang, Xinxiong Chen, Deyin Kong, Jianghao Li, Ziyu Huang, Baolong Zhang, Caihua Wan, Ming Bai, Xiaojun Wu","doi":"10.1364/OL.546048","DOIUrl":null,"url":null,"abstract":"<p><p>Terahertz (THz) radar offers significant advantages, notably high-frequency and strong penetration ability, making it highly promising for applications in aerospace, non-destructive testing, and other imaging scenarios. However, existing THz radar imaging technologies face challenges in large-scale target detection due to the complexity and high costs of the system, which limits their development and commercial application. Here we establish a radar system based on a one-dimensional photonic crystal structure-enhanced 4-inch spintronic strong-field THz emitter and obtain THz radar signals and imaging with a signal-to-noise ratio of ∼58 dB and a bandwidth exceeding 5 THz. Through the precise design of the emitter structure, we ensure not only the generation of a high-quality uniform plane wave when the THz beam diameter reaches 4 in. but also the applicability of the THz field strength for radar imaging measurements within a 4-in. field of view area. The approach provides a promising platform for ultra-broadband, high-resolution, near-monostatic THz radar imaging, with broad potential applications in aerospace engineering, stealth testing, THz 3D reconstruction, and THz tomography.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"7118-7121"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.546048","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Terahertz (THz) radar offers significant advantages, notably high-frequency and strong penetration ability, making it highly promising for applications in aerospace, non-destructive testing, and other imaging scenarios. However, existing THz radar imaging technologies face challenges in large-scale target detection due to the complexity and high costs of the system, which limits their development and commercial application. Here we establish a radar system based on a one-dimensional photonic crystal structure-enhanced 4-inch spintronic strong-field THz emitter and obtain THz radar signals and imaging with a signal-to-noise ratio of ∼58 dB and a bandwidth exceeding 5 THz. Through the precise design of the emitter structure, we ensure not only the generation of a high-quality uniform plane wave when the THz beam diameter reaches 4 in. but also the applicability of the THz field strength for radar imaging measurements within a 4-in. field of view area. The approach provides a promising platform for ultra-broadband, high-resolution, near-monostatic THz radar imaging, with broad potential applications in aerospace engineering, stealth testing, THz 3D reconstruction, and THz tomography.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太赫兹(THz)雷达具有频率高、穿透能力强等显著优势,因此在航空航天、无损检测和其他成像领域的应用前景十分广阔。然而,现有的太赫兹雷达成像技术由于系统复杂、成本高昂,在大规模目标探测方面面临挑战,限制了其发展和商业应用。在此,我们建立了一种基于一维光子晶体结构增强型 4 英寸自旋电子强场太赫兹发射器的雷达系统,并获得了信噪比为 ∼58 dB、带宽超过 5 THz 的太赫兹雷达信号和成像。通过对发射器结构的精确设计,我们不仅确保了在太赫兹光束直径达到 4 英寸时产生高质量的均匀平面波,还确保了太赫兹场强适用于 4 英寸视场区域内的雷达成像测量。该方法为超宽带、高分辨率、近单静态太赫兹雷达成像提供了一个前景广阔的平台,在航空航天工程、隐形测试、太赫兹三维重建和太赫兹层析成像等领域具有广泛的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
期刊最新文献
All-fiber E + S band continuously tunable bismuth-doped germanosilicate fiber laser. Anomalous infrared conical emission during ordered multifilamentation in gases. Bio-inspired snapshot polarization-hyperspectral camera. Blind aberration correction for light field photography. Broadband plasmon waveguide resonance sensing for photoacoustic spectroscopic analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1