Yan Liu, Jing Han, Jinjia Guo, Qinfeng Xu, Linwei Zhu
{"title":"High-resolution and instability-driven image reconstruction based on wave localization in azobenzene polymer.","authors":"Yan Liu, Jing Han, Jinjia Guo, Qinfeng Xu, Linwei Zhu","doi":"10.1364/OL.536701","DOIUrl":null,"url":null,"abstract":"<p><p>Transverse modulation instability (MI) has been proved useful for reconstructing noisy images. However, the signal-noise resonances for high-frequency modes are always suppressed during the generation of instability, resulting in the blurring of output images. By controlling of photo-birefringence and isomerization of azobenzene-derivative polymer, we proposed an instability-driven reconstruction by re-growing high-frequency modes via localizing wave response. The agreement between the experimental results and numerical simulations proves its effectiveness. This work provides a general and flexible way for high-resolution target detection.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"7138-7141"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.536701","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Transverse modulation instability (MI) has been proved useful for reconstructing noisy images. However, the signal-noise resonances for high-frequency modes are always suppressed during the generation of instability, resulting in the blurring of output images. By controlling of photo-birefringence and isomerization of azobenzene-derivative polymer, we proposed an instability-driven reconstruction by re-growing high-frequency modes via localizing wave response. The agreement between the experimental results and numerical simulations proves its effectiveness. This work provides a general and flexible way for high-resolution target detection.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.