Large field-of-view Shack-Hartmann wavefront sensor based on a high-density lens transfer function retrieval.

IF 3.1 2区 物理与天体物理 Q2 OPTICS Optics letters Pub Date : 2024-12-15 DOI:10.1364/OL.543916
Siqi Wu, Qiaozhi He, Jichong Zhou, Shuxin Liu, Huazhen Liu, Jiamiao Yang
{"title":"Large field-of-view Shack-Hartmann wavefront sensor based on a high-density lens transfer function retrieval.","authors":"Siqi Wu, Qiaozhi He, Jichong Zhou, Shuxin Liu, Huazhen Liu, Jiamiao Yang","doi":"10.1364/OL.543916","DOIUrl":null,"url":null,"abstract":"<p><p>The Shack-Hartmann wavefront sensor (SHWS) is known for its high accuracy and robust wavefront sensing capabilities. However, conventional compact SHWS confronts limitations in measuring field-of-view to meet emerging applications' increasing demands. Here, we propose a high-density lens transfer function retrieval (HDLTR)-based SHWS to expand its field-of-view. In HDLTR-SHWS, an additional lens is introduced into the measurement system, which converges input wavefront with large aperture onto detectable aperture of sensor. A densely sampling set of phase delays is first employed to retrieve the transfer function of the lens and to isolate lens distortion, which is used to accurately demodulate convergent wavefronts and reconstruct incident wavefronts. We also utilize a global spot matching method to reconstruct the converged wavefront with a large dynamic range. Our experimental results demonstrate that the HDLTR-SHWS expands the field-of-view of SHWS by a factor of 24.9 and achieves an accuracy of less than λ/80.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"7186-7189"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.543916","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Shack-Hartmann wavefront sensor (SHWS) is known for its high accuracy and robust wavefront sensing capabilities. However, conventional compact SHWS confronts limitations in measuring field-of-view to meet emerging applications' increasing demands. Here, we propose a high-density lens transfer function retrieval (HDLTR)-based SHWS to expand its field-of-view. In HDLTR-SHWS, an additional lens is introduced into the measurement system, which converges input wavefront with large aperture onto detectable aperture of sensor. A densely sampling set of phase delays is first employed to retrieve the transfer function of the lens and to isolate lens distortion, which is used to accurately demodulate convergent wavefronts and reconstruct incident wavefronts. We also utilize a global spot matching method to reconstruct the converged wavefront with a large dynamic range. Our experimental results demonstrate that the HDLTR-SHWS expands the field-of-view of SHWS by a factor of 24.9 and achieves an accuracy of less than λ/80.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
期刊最新文献
All-fiber E + S band continuously tunable bismuth-doped germanosilicate fiber laser. Anomalous infrared conical emission during ordered multifilamentation in gases. Bio-inspired snapshot polarization-hyperspectral camera. Blind aberration correction for light field photography. Broadband plasmon waveguide resonance sensing for photoacoustic spectroscopic analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1