Ricardo Benini, Leandro A Oliveira, Lucas Gomes-de-Souza, Adrielly Santos, Lígia C Casula, Carlos C Crestani
{"title":"Influence of strain on expression and habituation of autonomic and cardiovascular responses to restraint stress in rats.","authors":"Ricardo Benini, Leandro A Oliveira, Lucas Gomes-de-Souza, Adrielly Santos, Lígia C Casula, Carlos C Crestani","doi":"10.1016/j.physbeh.2024.114781","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the influence of rat strain in expression of autonomic and cardiovascular changes during acute exposure to restraint stress, as well as in habituation of these physiological responses upon repeated exposure to restraint. For this, blood pressure, heart rate (HR) and sympathetically-mediated cutaneous vasoconstriction were assessed in Wistar (control strain), Long-Evans, Holtzman and spontaneously hypertensive (SHR) rats during acute or 10<sup>th</sup> 60-min session of restraint stress. We observed that HR returned faster to baseline values during recovery of the acute session of restraint in Long-Evans and SHR rats in relation to Wistar, thus indicating shorter tachycardia in these strains. Long-Evans also presented enhanced sympathetically-mediated cutaneous vasoconstriction to acute restraint stress. Habituation of the tachycardiac response evidenced as a faster HR return to baseline values during recovery of the 10<sup>th</sup> restraint session in relation to acute stress was similarly identified in both Wistar and Holtzman rats. However, cardiovascular changes were similarly evoked during acute and 10<sup>th</sup> restraint stress session in SHR and Long-Evans rats. Taken together, these findings indicate that both cardiovascular responses during acute stress and habituation of these physiological adjustments upon repeated exposure to the same stressor are strain-dependent. Differences were mainly observed in Long-Evans and SHR strains, whereas Holtzman rats seem to present similar autonomic and cardiovascular changes in relation to Wistar rats.</p>","PeriodicalId":20201,"journal":{"name":"Physiology & Behavior","volume":" ","pages":"114781"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology & Behavior","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.physbeh.2024.114781","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to evaluate the influence of rat strain in expression of autonomic and cardiovascular changes during acute exposure to restraint stress, as well as in habituation of these physiological responses upon repeated exposure to restraint. For this, blood pressure, heart rate (HR) and sympathetically-mediated cutaneous vasoconstriction were assessed in Wistar (control strain), Long-Evans, Holtzman and spontaneously hypertensive (SHR) rats during acute or 10th 60-min session of restraint stress. We observed that HR returned faster to baseline values during recovery of the acute session of restraint in Long-Evans and SHR rats in relation to Wistar, thus indicating shorter tachycardia in these strains. Long-Evans also presented enhanced sympathetically-mediated cutaneous vasoconstriction to acute restraint stress. Habituation of the tachycardiac response evidenced as a faster HR return to baseline values during recovery of the 10th restraint session in relation to acute stress was similarly identified in both Wistar and Holtzman rats. However, cardiovascular changes were similarly evoked during acute and 10th restraint stress session in SHR and Long-Evans rats. Taken together, these findings indicate that both cardiovascular responses during acute stress and habituation of these physiological adjustments upon repeated exposure to the same stressor are strain-dependent. Differences were mainly observed in Long-Evans and SHR strains, whereas Holtzman rats seem to present similar autonomic and cardiovascular changes in relation to Wistar rats.
期刊介绍:
Physiology & Behavior is aimed at the causal physiological mechanisms of behavior and its modulation by environmental factors. The journal invites original reports in the broad area of behavioral and cognitive neuroscience, in which at least one variable is physiological and the primary emphasis and theoretical context are behavioral. The range of subjects includes behavioral neuroendocrinology, psychoneuroimmunology, learning and memory, ingestion, social behavior, and studies related to the mechanisms of psychopathology. Contemporary reviews and theoretical articles are welcomed and the Editors invite such proposals from interested authors.