Phosphocreatine-mediated enhancement of mitochondrial function for accelerated healing of diabetic foot ulcers through the PGC-1α-NRF-1 signaling pathway.
{"title":"Phosphocreatine-mediated enhancement of mitochondrial function for accelerated healing of diabetic foot ulcers through the PGC-1α-NRF-1 signaling pathway.","authors":"Eskandar Qaed, Marwan Almoiliqy, Wu Liu, Jingyu Wang, Haitham Saad Al-Mashriqi, Waleed Aldahmash, Mueataz A Mahyoub, Zeyao Tang","doi":"10.1016/j.tice.2024.102674","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic foot ulcers (DFUs) pose a significant clinical challenge due to their slow healing and high risk of complications, which severely affect patient quality of life. Central to the delayed healing observed in DFUs is mitochondrial dysfunction, a critical factor impairing cellular repair processes. Phosphocreatine (PCr), a vital molecule involved in cellular energy buffering and ATP regeneration, has recently emerged as a promising therapeutic candidate for ameliorating mitochondrial dysfunction and enhancing tissue repair. This study explores the novel therapeutic potential of PCr in restoring mitochondrial function and accelerating wound healing in DFUs through both in vitro and in vivo models. Using hyperglycemic human umbilical vein endothelial cells (HUVECs) as an in vitro model and a streptozotocin (STZ)-induced diabetic rat model as an in vivo, we evaluated the impact of PCr treatment on mitochondrial activity and wound repair. PCr treatment notably upregulated key mitochondrial biogenesis markers, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and nuclear respiratory factor 1 (NRF-1), indicating a restoration of mitochondrial function. In vivo, PCr-treated diabetic rats demonstrated significantly accelerated wound closure, enhanced granulation tissue formation, and reduced inflammatory cell infiltration. These findings underscore PCr's potential to address mitochondrial dysfunction and expedite wound healing in DFUs. This study offers promising new insights into PCr as a targeted therapeutic intervention, paving the way for improved patient outcomes in managing diabetic foot ulcers.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102674"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2024.102674","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic foot ulcers (DFUs) pose a significant clinical challenge due to their slow healing and high risk of complications, which severely affect patient quality of life. Central to the delayed healing observed in DFUs is mitochondrial dysfunction, a critical factor impairing cellular repair processes. Phosphocreatine (PCr), a vital molecule involved in cellular energy buffering and ATP regeneration, has recently emerged as a promising therapeutic candidate for ameliorating mitochondrial dysfunction and enhancing tissue repair. This study explores the novel therapeutic potential of PCr in restoring mitochondrial function and accelerating wound healing in DFUs through both in vitro and in vivo models. Using hyperglycemic human umbilical vein endothelial cells (HUVECs) as an in vitro model and a streptozotocin (STZ)-induced diabetic rat model as an in vivo, we evaluated the impact of PCr treatment on mitochondrial activity and wound repair. PCr treatment notably upregulated key mitochondrial biogenesis markers, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and nuclear respiratory factor 1 (NRF-1), indicating a restoration of mitochondrial function. In vivo, PCr-treated diabetic rats demonstrated significantly accelerated wound closure, enhanced granulation tissue formation, and reduced inflammatory cell infiltration. These findings underscore PCr's potential to address mitochondrial dysfunction and expedite wound healing in DFUs. This study offers promising new insights into PCr as a targeted therapeutic intervention, paving the way for improved patient outcomes in managing diabetic foot ulcers.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.