Real-World and Clinical Trial Validation of a Deep Learning Radiomic Biomarker for PD-(L)1 Immune Checkpoint Inhibitor Response in Advanced Non-Small Cell Lung Cancer.

IF 3.3 Q2 ONCOLOGY JCO Clinical Cancer Informatics Pub Date : 2024-12-01 Epub Date: 2024-12-13 DOI:10.1200/CCI.24.00133
Chiharu Sako, Chong Duan, Kevin Maresca, Sean Kent, Taly Gilat Schmidt, Hugo J W L Aerts, Ravi B Parikh, George R Simon, Petr Jordan
{"title":"Real-World and Clinical Trial Validation of a Deep Learning Radiomic Biomarker for PD-(L)1 Immune Checkpoint Inhibitor Response in Advanced Non-Small Cell Lung Cancer.","authors":"Chiharu Sako, Chong Duan, Kevin Maresca, Sean Kent, Taly Gilat Schmidt, Hugo J W L Aerts, Ravi B Parikh, George R Simon, Petr Jordan","doi":"10.1200/CCI.24.00133","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study developed and validated a novel deep learning radiomic biomarker to estimate response to immune checkpoint inhibitor (ICI) therapy in advanced non-small cell lung cancer (NSCLC) using real-world data (RWD) and clinical trial data.</p><p><strong>Materials and methods: </strong>Retrospective RWD of 1,829 patients with advanced NSCLC treated with PD-(L)1 ICIs were collected from 10 academic and community institutions in the United States and Europe. The RWD included data sets for discovery (Data Set A-Discovery, n = 1,173) and independent test (Data Set B, n = 458). A radiomic pipeline, containing a deep learning feature extractor and a survival model, generated the computed tomography (CT) response score (CTRS) applied to the pretreatment routine CT/positron emission tomography (PET)-CT scan. An enhanced CTRS (eCTRS) also incorporated age, sex, treatment line, and lesion annotations. Performance was evaluated against progression-free survival (PFS) and overall survival (OS). Biomarker generalizability was further evaluated using a secondary analysis of a prospective clinical trial (ClinicalTrials.gov identifier: NCT02573259) evaluating the PD-1 inhibitor sasanlimab in second or later line of treatment (Data Set C, n = 54).</p><p><strong>Results: </strong>In RWD Test Data Set B, the CTRS identified patients with a high probability of response to ICI with a PFS hazard ratio (HR) of 0.46 (95% CI, 0.26 to 0.82) and an OS HR of 0.50 (95% CI, 0.28 to 0.92) in the first-line ICI monotherapy cohort, after adjustment for baseline covariates including the PD-L1 tumor proportion score. In Clinical Trial Data Set C, the CTRS demonstrated an adjusted PFS HR of 1.03 (95% CI, 0.43 to 2.47) and an OS HR of 0.33 (95% CI, 0.14 to 0.91). The CTRS and eCTRS outperformed traditional imaging biomarkers of lesion size in PFS and OS for RWD Test Data Set B and in OS for the Clinical Trial Data Set.</p><p><strong>Conclusion: </strong>The study developed and validated a deep learning radiomic biomarker using pretreatment routine CT/PET-CT scans to identify ICI benefit in advanced NSCLC.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"8 ","pages":"e2400133"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.24.00133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study developed and validated a novel deep learning radiomic biomarker to estimate response to immune checkpoint inhibitor (ICI) therapy in advanced non-small cell lung cancer (NSCLC) using real-world data (RWD) and clinical trial data.

Materials and methods: Retrospective RWD of 1,829 patients with advanced NSCLC treated with PD-(L)1 ICIs were collected from 10 academic and community institutions in the United States and Europe. The RWD included data sets for discovery (Data Set A-Discovery, n = 1,173) and independent test (Data Set B, n = 458). A radiomic pipeline, containing a deep learning feature extractor and a survival model, generated the computed tomography (CT) response score (CTRS) applied to the pretreatment routine CT/positron emission tomography (PET)-CT scan. An enhanced CTRS (eCTRS) also incorporated age, sex, treatment line, and lesion annotations. Performance was evaluated against progression-free survival (PFS) and overall survival (OS). Biomarker generalizability was further evaluated using a secondary analysis of a prospective clinical trial (ClinicalTrials.gov identifier: NCT02573259) evaluating the PD-1 inhibitor sasanlimab in second or later line of treatment (Data Set C, n = 54).

Results: In RWD Test Data Set B, the CTRS identified patients with a high probability of response to ICI with a PFS hazard ratio (HR) of 0.46 (95% CI, 0.26 to 0.82) and an OS HR of 0.50 (95% CI, 0.28 to 0.92) in the first-line ICI monotherapy cohort, after adjustment for baseline covariates including the PD-L1 tumor proportion score. In Clinical Trial Data Set C, the CTRS demonstrated an adjusted PFS HR of 1.03 (95% CI, 0.43 to 2.47) and an OS HR of 0.33 (95% CI, 0.14 to 0.91). The CTRS and eCTRS outperformed traditional imaging biomarkers of lesion size in PFS and OS for RWD Test Data Set B and in OS for the Clinical Trial Data Set.

Conclusion: The study developed and validated a deep learning radiomic biomarker using pretreatment routine CT/PET-CT scans to identify ICI benefit in advanced NSCLC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对晚期非小细胞肺癌 PD-(L)1 免疫检查点抑制剂反应的深度学习辐射组学生物标记物的真实世界和临床试验验证。
目的:本研究利用真实世界数据(RWD)和临床试验数据,开发并验证了一种新型深度学习放射组学生物标记物,用于估计晚期非小细胞肺癌(NSCLC)患者对免疫检查点抑制剂(ICI)治疗的反应:从美国和欧洲的 10 家学术和社区机构收集了 1829 例接受 PD-(L)1 ICIs 治疗的晚期 NSCLC 患者的回顾性 RWD 数据。RWD包括发现数据集(数据集A-发现,n = 1,173)和独立测试数据集(数据集B,n = 458)。包含深度学习特征提取器和生存模型的放射学管道生成了计算机断层扫描(CT)反应评分(CTRS),应用于治疗前的常规 CT/ 正电子发射断层扫描(PET)-CT 扫描。增强型 CTRS(eCTRS)还纳入了年龄、性别、治疗方案和病灶注释。根据无进展生存期(PFS)和总生存期(OS)对其性能进行评估。通过对一项前瞻性临床试验(ClinicalTrials.gov 标识符:NCT02573259)的二次分析,进一步评估了生物标志物的通用性,该试验评估了 PD-1 抑制剂 sasanlimab 在二线或二线以上治疗中的应用(数据集 C,n = 54):结果:在RWD测试数据集B中,CTRS确定了对ICI有高响应概率的患者,在调整了包括PD-L1肿瘤比例评分在内的基线协变量后,一线ICI单药队列的PFS危险比(HR)为0.46(95% CI,0.26至0.82),OS HR为0.50(95% CI,0.28至0.92)。在临床试验数据集C中,CTRS显示调整后的PFS HR为1.03(95% CI,0.43至2.47),OS HR为0.33(95% CI,0.14至0.91)。在RWD测试数据集B的PFS和OS以及临床试验数据集的OS方面,CTRS和eCTRS优于传统的病灶大小成像生物标志物:该研究利用治疗前常规CT/PET-CT扫描开发并验证了一种深度学习放射学生物标志物,可用于识别晚期NSCLC的ICI获益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
期刊最新文献
CFO: Calibration-Free Odds Bayesian Designs for Dose Finding in Clinical Trials. Patient-Reported Outcomes: Comparing Functional Avoidance and Standard Thoracic Radiation Therapy in Lung Cancer. Advancements in Interoperability: Achieving Anatomic Pathology Reports That Adhere to International Standards and Are Both Human-Readable and Readily Computable. Incorporating Structured and Unstructured Data Sources to Identify and Characterize Hereditary Cancer Testing Among Veterans With Metastatic Castration-Resistant Prostate Cancer. Leveraging Radiotherapy Data for Precision Oncology: Veterans Affairs Granular Radiotherapy Information Database.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1