Evangelia Katsoulakis, Cecelia J Madison, Rishabh Kapoor, Ryan A Melson, Anthony Gao, Jiantao Bian, Ryan M Hausler, Peter N Danilov, Nicholas G Nickols, Abhishek A Solanki, William C Sleeman, Jatinder R Palta, Scott L DuVall, Julie A Lynch, Reid F Thompson, Maria Kelly
{"title":"Leveraging Radiotherapy Data for Precision Oncology: Veterans Affairs Granular Radiotherapy Information Database.","authors":"Evangelia Katsoulakis, Cecelia J Madison, Rishabh Kapoor, Ryan A Melson, Anthony Gao, Jiantao Bian, Ryan M Hausler, Peter N Danilov, Nicholas G Nickols, Abhishek A Solanki, William C Sleeman, Jatinder R Palta, Scott L DuVall, Julie A Lynch, Reid F Thompson, Maria Kelly","doi":"10.1200/CCI-24-00219","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Despite the frequency with which patients with cancer receive radiotherapy, integrating radiation oncology data with other aspects of the clinical record remains challenging because of siloed and variable software systems, high data complexity, and inconsistent data encoding. Recognizing these challenges, the Veterans Affairs (VA) National Radiation Oncology Program (NROP) is developing Granular Radiotherapy Information Database (GRID), a platform and pipeline to combine radiotherapy data across the VA with the goal of both better understanding treatment patterns and outcomes and enhancing research and data analysis capabilities.</p><p><strong>Methods: </strong>This study represents a proof-of-principle retrospective cohort analysis and review of select radiation treatment data from the VA Radiation Oncology Quality Surveillance Program (VAROQS) initiative. Key radiation oncology data elements were extracted from Digital Imaging and Communications in Medicine Radiotherapy extension (DICOM-RT) files and combined into a single database using custom scripts. These data were transferred to the VA's Corporate Data Warehouse (CDW) for integration and comparison with the VA Cancer Registry System and tumor sequencing data.</p><p><strong>Results: </strong>The final cohort includes 1,568 patients, 766 of whom have corresponding DICOM-RT data. All cases were successfully linked to the CDW; 18.8% of VAROQS cases were not reported in the existing VA cancer registry. The VAROQS data contributed accurate radiation treatment details that were often erroneous or missing from the cancer registry record. Tumor sequencing data were available for approximately 5% of VAROQS cases. Finally, we describe a clinical dosimetric analysis leveraging GRID.</p><p><strong>Conclusion: </strong>NROP's GRID initiative aims to integrate VA radiotherapy data with other clinical data sets. It is anticipated to generate the single largest collection of radiation oncology-centric data merged with detailed clinical and genomic data, primed for large-scale quality assurance, research reuse, and discovery science.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400219"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-24-00219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Despite the frequency with which patients with cancer receive radiotherapy, integrating radiation oncology data with other aspects of the clinical record remains challenging because of siloed and variable software systems, high data complexity, and inconsistent data encoding. Recognizing these challenges, the Veterans Affairs (VA) National Radiation Oncology Program (NROP) is developing Granular Radiotherapy Information Database (GRID), a platform and pipeline to combine radiotherapy data across the VA with the goal of both better understanding treatment patterns and outcomes and enhancing research and data analysis capabilities.
Methods: This study represents a proof-of-principle retrospective cohort analysis and review of select radiation treatment data from the VA Radiation Oncology Quality Surveillance Program (VAROQS) initiative. Key radiation oncology data elements were extracted from Digital Imaging and Communications in Medicine Radiotherapy extension (DICOM-RT) files and combined into a single database using custom scripts. These data were transferred to the VA's Corporate Data Warehouse (CDW) for integration and comparison with the VA Cancer Registry System and tumor sequencing data.
Results: The final cohort includes 1,568 patients, 766 of whom have corresponding DICOM-RT data. All cases were successfully linked to the CDW; 18.8% of VAROQS cases were not reported in the existing VA cancer registry. The VAROQS data contributed accurate radiation treatment details that were often erroneous or missing from the cancer registry record. Tumor sequencing data were available for approximately 5% of VAROQS cases. Finally, we describe a clinical dosimetric analysis leveraging GRID.
Conclusion: NROP's GRID initiative aims to integrate VA radiotherapy data with other clinical data sets. It is anticipated to generate the single largest collection of radiation oncology-centric data merged with detailed clinical and genomic data, primed for large-scale quality assurance, research reuse, and discovery science.