{"title":"Predicting High-risk Lung Adenocarcinoma in Solid and Part-solid Nodules on Low-dose CT: A Multicenter Study.","authors":"Jieke Liu, Yong Li, Yu Long, Yongji Zheng, Junqiang Liang, Wei Lin, Ling Guo, Haomiao Qing, Peng Zhou","doi":"10.1016/j.acra.2024.11.059","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>High-grade patterns, visceral pleural invasion, lymphovascular invasion, spread through air spaces, and lymph node metastasis are high-risk factors and associated with poor prognosis in lung adenocarcinomas (LUADs). This study aimed to construct and validate a radiomic model and a radiographic model derived from low-dose CT (LDCT) for predicting high-risk LUADs in solid and part-solid nodules.</p><p><strong>Materials and methods: </strong>This study retrospectively enrolled 658 pathologically confirmed LUADs from July 2018 to December 2022 from four centers, which were divided into training set (n=411), internal validation set (n=139), and external validation set (n=108). Radiomic features and radiographic features including maximal diameter, consolidation/tumor ratio (CTR), and semantic features, were obtained to construct a radiomic model and a radiographic model through multivariable logistic regression. Area under receiver operating characteristic curve (AUC) was utilized to assess the diagnostic performance of the models.</p><p><strong>Results: </strong>Three radiomic features (GLCM_Correlation, GLSZM_SmallAreaEmphasis, and GLDM_LargeDependenceHighGrayLevelEmphasis) and four radiographic features (maximal diameter, CTR, spiculation, and pleural indentation) were selected to build models. The radiomic model yielded AUCs of 0.916 in the internal validation set and 0.938 in the external validation set, which were significantly higher than the AUCs of the radiographic model (0.916 vs. 0.868, P=0.014 and 0.938 vs. 0.880, P=0.002).</p><p><strong>Conclusion: </strong>Our LDCT-based radiomic model enabled non-invasive identification of high-risk LUADs in solid and part-solid nodules with good diagnostic performance and might assist in case-specific decision-making in lung cancer screening.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.11.059","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: High-grade patterns, visceral pleural invasion, lymphovascular invasion, spread through air spaces, and lymph node metastasis are high-risk factors and associated with poor prognosis in lung adenocarcinomas (LUADs). This study aimed to construct and validate a radiomic model and a radiographic model derived from low-dose CT (LDCT) for predicting high-risk LUADs in solid and part-solid nodules.
Materials and methods: This study retrospectively enrolled 658 pathologically confirmed LUADs from July 2018 to December 2022 from four centers, which were divided into training set (n=411), internal validation set (n=139), and external validation set (n=108). Radiomic features and radiographic features including maximal diameter, consolidation/tumor ratio (CTR), and semantic features, were obtained to construct a radiomic model and a radiographic model through multivariable logistic regression. Area under receiver operating characteristic curve (AUC) was utilized to assess the diagnostic performance of the models.
Results: Three radiomic features (GLCM_Correlation, GLSZM_SmallAreaEmphasis, and GLDM_LargeDependenceHighGrayLevelEmphasis) and four radiographic features (maximal diameter, CTR, spiculation, and pleural indentation) were selected to build models. The radiomic model yielded AUCs of 0.916 in the internal validation set and 0.938 in the external validation set, which were significantly higher than the AUCs of the radiographic model (0.916 vs. 0.868, P=0.014 and 0.938 vs. 0.880, P=0.002).
Conclusion: Our LDCT-based radiomic model enabled non-invasive identification of high-risk LUADs in solid and part-solid nodules with good diagnostic performance and might assist in case-specific decision-making in lung cancer screening.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.