Future Arctic: how will increasing coastal erosion shape nearshore planktonic food webs?

IF 5.1 2区 地球科学 Q1 LIMNOLOGY Limnology and Oceanography Letters Pub Date : 2024-12-14 DOI:10.1002/lol2.10446
Gabriel A. Juma, Cédric L. Meunier, Emily M. Herstoff, Anna M. Irrgang, Michael Fritz, Caroline Weber, Hugues Lantuit, Inga V. Kirstein, Maarten Boersma
{"title":"Future Arctic: how will increasing coastal erosion shape nearshore planktonic food webs?","authors":"Gabriel A. Juma, Cédric L. Meunier, Emily M. Herstoff, Anna M. Irrgang, Michael Fritz, Caroline Weber, Hugues Lantuit, Inga V. Kirstein, Maarten Boersma","doi":"10.1002/lol2.10446","DOIUrl":null,"url":null,"abstract":"Arctic regimes. Currently, warming accelerates the erosion of permafrost coasts and the associated discharge of sediment, carbon, and nutrients into the Arctic Ocean. However, the impacts of coastal erosion on planktonic food webs remain understudied. We aimed to (1) understand how coastal erosion impacts nearshore carbon, nutrient, and light regimes; (2) investigate the effects on primary production and energy transfer; and (3) predict how increased erosion will impact the productivity of consumers, and the overall food web interactions. We found that sediment discharge increases turbidity (darkening). This darkening is expected to hamper phytoplankton productivity, while additional carbon input will provide bacteria with direct energy sources, and shift the balance between basal autotrophic and heterotrophic production. Since the heterotrophic pathway has a lower efficiency, its dominance might negatively affect mesozooplankton. Increased Arctic coastal erosion might therefore influence planktonic food webs by changing mechanisms of energy mobilization and transfer to higher trophic levels.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"242 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/lol2.10446","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Arctic regimes. Currently, warming accelerates the erosion of permafrost coasts and the associated discharge of sediment, carbon, and nutrients into the Arctic Ocean. However, the impacts of coastal erosion on planktonic food webs remain understudied. We aimed to (1) understand how coastal erosion impacts nearshore carbon, nutrient, and light regimes; (2) investigate the effects on primary production and energy transfer; and (3) predict how increased erosion will impact the productivity of consumers, and the overall food web interactions. We found that sediment discharge increases turbidity (darkening). This darkening is expected to hamper phytoplankton productivity, while additional carbon input will provide bacteria with direct energy sources, and shift the balance between basal autotrophic and heterotrophic production. Since the heterotrophic pathway has a lower efficiency, its dominance might negatively affect mesozooplankton. Increased Arctic coastal erosion might therefore influence planktonic food webs by changing mechanisms of energy mobilization and transfer to higher trophic levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未来的北极:海岸侵蚀加剧将如何塑造近岸浮游生物食物网?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
3.80%
发文量
63
审稿时长
25 weeks
期刊介绍: Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.
期刊最新文献
A model of near‐sea ice phytoplankton blooms Future Arctic: how will increasing coastal erosion shape nearshore planktonic food webs? Mineral surface area of sinking particles in the deep ocean interior: Preliminary implications Issue Information Capitalizing on the wealth of chemical data in the accretionary structures of aquatic taxa: Opportunities from across the tree of life
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1