Simple and sensitive monitoring of polycyclic aromatic hydrocarbons in edible oils by polydimethylsiloxane/pyrazine-based hyper-crosslinked polymer coated stir bar sorptive extraction followed by gas chromatography-mass spectrometry detection

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL Analytica Chimica Acta Pub Date : 2024-12-15 DOI:10.1016/j.aca.2024.343554
Yiwen Han, Aikun Han, Yaqiong Qin, Yuan Tian, Bin Peng, Lijun He, Wenfen Zhang, Wenjie Zhao, Shusheng Zhang
{"title":"Simple and sensitive monitoring of polycyclic aromatic hydrocarbons in edible oils by polydimethylsiloxane/pyrazine-based hyper-crosslinked polymer coated stir bar sorptive extraction followed by gas chromatography-mass spectrometry detection","authors":"Yiwen Han, Aikun Han, Yaqiong Qin, Yuan Tian, Bin Peng, Lijun He, Wenfen Zhang, Wenjie Zhao, Shusheng Zhang","doi":"10.1016/j.aca.2024.343554","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.<h3>Results</h3>A pyrazine embedded hyper-crosslinked porous polymer, HCP<sub>Pz-TPB</sub>, was synthesized via a Friedel-Crafts reaction, utilizing triphenylbenzene (TPB) as the monomer and 2,5-dibromomethylpyrazine as the cross-linking reagent. The material was combined with polydimethylsiloxane (PDMS) using the sol-gel method, and applied as a coating to a dumbbell-shaped stir bar prepared in-house. Using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS), 15 PAHs in edible oils were successfully quantified. Optimal conditions for the extraction of PAHs were experimentally investigated, with factors such as stirring rate, extraction time, extraction temperature, desorption solvent, and desorption time systematically optimized. The final method demonstrated a broad linear range (0.6–150 ng g<sup>-1</sup>), and low limits of detection (0.04–0.28 ng g<sup>-1</sup>). The recoveries of PAHs in real edible oil samples ranged from 83.14% to 128.01%, with relative standard deviations (RSDs) below 13.47%.<h3>Significance</h3>This method simplifies PAH extraction by eliminating steps such as saponification, liquid-liquid extraction, drying, and re-dissolution, thus reducing potential analyte loss and errors associated with the inclusion of multiple pretreatment steps typical of conventional methods reported in the literature. Notably, the adsorbent materials prepared in this study can be reused up to 30 times, underscoring its sustainability. The proposed research broadens the diversity of coating choices for SBSE applications while offering a streamlined, cost-effective, and greener alternative for PAH determinations in edible oils via SBSE/GC-MS.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"350 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2024.343554","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.

Results

A pyrazine embedded hyper-crosslinked porous polymer, HCPPz-TPB, was synthesized via a Friedel-Crafts reaction, utilizing triphenylbenzene (TPB) as the monomer and 2,5-dibromomethylpyrazine as the cross-linking reagent. The material was combined with polydimethylsiloxane (PDMS) using the sol-gel method, and applied as a coating to a dumbbell-shaped stir bar prepared in-house. Using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS), 15 PAHs in edible oils were successfully quantified. Optimal conditions for the extraction of PAHs were experimentally investigated, with factors such as stirring rate, extraction time, extraction temperature, desorption solvent, and desorption time systematically optimized. The final method demonstrated a broad linear range (0.6–150 ng g-1), and low limits of detection (0.04–0.28 ng g-1). The recoveries of PAHs in real edible oil samples ranged from 83.14% to 128.01%, with relative standard deviations (RSDs) below 13.47%.

Significance

This method simplifies PAH extraction by eliminating steps such as saponification, liquid-liquid extraction, drying, and re-dissolution, thus reducing potential analyte loss and errors associated with the inclusion of multiple pretreatment steps typical of conventional methods reported in the literature. Notably, the adsorbent materials prepared in this study can be reused up to 30 times, underscoring its sustainability. The proposed research broadens the diversity of coating choices for SBSE applications while offering a streamlined, cost-effective, and greener alternative for PAH determinations in edible oils via SBSE/GC-MS.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过聚二甲基硅氧烷/吡嗪基超交联聚合物涂层搅拌棒吸附萃取,然后进行气相色谱-质谱检测,对食用油中的多环芳烃进行简单灵敏的监测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
期刊最新文献
Review on activity-based detection of doping substances and growth promotors in biological matrices: do bioassays deserve a place in control programs? Look but don't touch: Non-invasive chemical analysis of organic paint binders - A review. Spatiotemporal metabolic mapping of ex-situ preserved hearts subjected to dialysis by integration of bio-SPME sampling with non-targeted metabolipidomic profiling Corrigendum to “A liquid crystal-decorated aptasensing gadget for rapid monitoring of A549 cells: Future portable test kit for lung cancer diagnosis” [Anal. Chim. Acta. 1330 (2024), 343276-343285] Corrigendum to “A label-free liquid crystal-assisted aptasensor for trace level detection of tobramycin in milk and chicken egg samples” [Anal. Chim. Acta, 1236 (2022), 340588]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1