Multifunctional energy storage and photoluminescence of Er-modified KNN-based transparent ferroelectric ceramics

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materiomics Pub Date : 2024-12-15 DOI:10.1016/j.jmat.2024.100993
Zhichao Gong, Haojie Yue, Kailing Fang, Kun Guo, Kang Li, Chong Guo, Huacheng Zhang, Ziliang Deng, Zhiyong Liu, Bing Xie, Pu Mao, Jinshan Lu, Shifeng Guo, Kui Yao, Francis Eng Hock Tay
{"title":"Multifunctional energy storage and photoluminescence of Er-modified KNN-based transparent ferroelectric ceramics","authors":"Zhichao Gong, Haojie Yue, Kailing Fang, Kun Guo, Kang Li, Chong Guo, Huacheng Zhang, Ziliang Deng, Zhiyong Liu, Bing Xie, Pu Mao, Jinshan Lu, Shifeng Guo, Kui Yao, Francis Eng Hock Tay","doi":"10.1016/j.jmat.2024.100993","DOIUrl":null,"url":null,"abstract":"Against the backdrop of increasing miniaturization and integration of electronic components, the demand for materials with multifunctionality has increased significantly. Among these, transparent fluorescent ferroelectric ceramics exhibiting ferroelectricity, optical transparency, and photoluminescence (PL) have garnered significant attention. However, an interdependent relationship exists in a ferroelectric material among polarization, transparency, and photoluminescence, which presents a challenge for optimizing the coupling of optoelectronic properties. In this work, the doping concentration of Er<sup>3+</sup> in 0.825(K<sub>0.5</sub>Na<sub>0.5</sub>)NbO<sub>3</sub>-0.175Sr(Sc<sub>0.5</sub>Nb<sub>0.5</sub>)O<sub>3</sub>: <em>x</em>%Er (<em>x =</em> 0–0.15) system was modulated by first-principle calculations through compositional design and performance-influencing-factor-analysis strategies. The experimental results showed that grain size of the ceramic was reduced to 28 μm at <em>x</em> = 0.05, concentration of vacancy defects in the lattice was low, and band gap value was increased to 3.105 eV. The multifunctional ceramic, while maintaining an excellent recoverable energy storage density (<em>W</em><sub>rec</sub> = 2.03 J/cm<sup>3</sup>) and energy storage efficiency (<em>η</em> = 75.67%), demonstrated a 56% (1100 nm) good near-infrared transmittance and upconversion photoluminescence properties at 527, 549 nm, and 667 nm exhibiting weak green, strong green, and weak red light, respectively. This study provides a theoretical foundation and new approach for realizing the multifunctionality of photoelectric couple by introducing rare earth elements as luminescent centers into ferroelectric ceramics.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"21 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2024.100993","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Against the backdrop of increasing miniaturization and integration of electronic components, the demand for materials with multifunctionality has increased significantly. Among these, transparent fluorescent ferroelectric ceramics exhibiting ferroelectricity, optical transparency, and photoluminescence (PL) have garnered significant attention. However, an interdependent relationship exists in a ferroelectric material among polarization, transparency, and photoluminescence, which presents a challenge for optimizing the coupling of optoelectronic properties. In this work, the doping concentration of Er3+ in 0.825(K0.5Na0.5)NbO3-0.175Sr(Sc0.5Nb0.5)O3: x%Er (x = 0–0.15) system was modulated by first-principle calculations through compositional design and performance-influencing-factor-analysis strategies. The experimental results showed that grain size of the ceramic was reduced to 28 μm at x = 0.05, concentration of vacancy defects in the lattice was low, and band gap value was increased to 3.105 eV. The multifunctional ceramic, while maintaining an excellent recoverable energy storage density (Wrec = 2.03 J/cm3) and energy storage efficiency (η = 75.67%), demonstrated a 56% (1100 nm) good near-infrared transmittance and upconversion photoluminescence properties at 527, 549 nm, and 667 nm exhibiting weak green, strong green, and weak red light, respectively. This study provides a theoretical foundation and new approach for realizing the multifunctionality of photoelectric couple by introducing rare earth elements as luminescent centers into ferroelectric ceramics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
期刊最新文献
Superposition of bulk and interface electric field for boosting charge transfer in Bi2MoO6/Bi19Br3S27 S-scheme heterojunctions Tuning the bonding environment of Se atom in Cu2MnSnSe4-based alloys for raised thermoelectric performance Suppression of the surface roughness by adjusting the temperature distribution in the top-seeded solution growth of SiC crystal. Multifunctional energy storage and photoluminescence of Er-modified KNN-based transparent ferroelectric ceramics A new-type electro-optic crystal: K3Nb3B2O12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1