Leeb hardness test as a tool for joint wall compressive strength (JCS) evaluation

IF 6.9 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Engineering Geology Pub Date : 2024-12-05 DOI:10.1016/j.enggeo.2024.107851
A.G. Corkum, B. Jeans, D. Mas Ivars
{"title":"Leeb hardness test as a tool for joint wall compressive strength (JCS) evaluation","authors":"A.G. Corkum, B. Jeans, D. Mas Ivars","doi":"10.1016/j.enggeo.2024.107851","DOIUrl":null,"url":null,"abstract":"The Barton-Bandis model for the nonlinear shear strength of rock joints is the most commonly used strength criterion in rock engineering practice. There have been advancements in determination of Joint Roughness Coefficient (<ce:italic>JRC</ce:italic>), such as the use of laser scanning; however, the equally important Joint Wall Compressive Strength (<ce:italic>JCS</ce:italic>) parameter has not been significantly advanced. The <ce:italic>JRC</ce:italic> and <ce:italic>JCS</ce:italic> are effectively linked, to some extent. A sensitive rebound hardness index test, the Leeb Hardness (LH) test, was investigated to provide a quantifiable and repeatable method of <ce:italic>JCS</ce:italic> determination that offers increased accuracy relative to current methods. The LH test value (<mml:math altimg=\"si5.svg\"><mml:msub><mml:mi>L</mml:mi><mml:mi>D</mml:mi></mml:msub></mml:math>) correlation to Unconfined Compressive Strength (<mml:math altimg=\"si1.svg\"><mml:msub><mml:mi>σ</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:math>) is proposed for <ce:italic>JCS</ce:italic> determination. In addition, this study investigates the <ce:italic>Influence Zone</ce:italic> of the LH test on surfaces with graded hardness profiles (e.g., weathered surfaces). This was done using a series of artificial composite plaster-rock specimens of known hardness to provide insight into the influence effects on the surface <mml:math altimg=\"si5.svg\"><mml:msub><mml:mi>L</mml:mi><mml:mi>D</mml:mi></mml:msub></mml:math> reading due to underlying material of contrasting hardness. In addition, a collection of natural rock specimens with variable joint wall hardness were collected and <mml:math altimg=\"si5.svg\"><mml:msub><mml:mi>L</mml:mi><mml:mi>D</mml:mi></mml:msub></mml:math> profiles were obtained by sequential surface grinding and testing. These natural rock specimens included those with wall surface materials softer and harder relative to the underlying intact rock. A Hardness Contrast Type was proposed for classification of hardness contrast conditions. The study findings showed the LH test is a suitable tool for predicting <ce:italic>JCS</ce:italic> and a proposed methodology was presented.","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"43 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.enggeo.2024.107851","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Barton-Bandis model for the nonlinear shear strength of rock joints is the most commonly used strength criterion in rock engineering practice. There have been advancements in determination of Joint Roughness Coefficient (JRC), such as the use of laser scanning; however, the equally important Joint Wall Compressive Strength (JCS) parameter has not been significantly advanced. The JRC and JCS are effectively linked, to some extent. A sensitive rebound hardness index test, the Leeb Hardness (LH) test, was investigated to provide a quantifiable and repeatable method of JCS determination that offers increased accuracy relative to current methods. The LH test value (LD) correlation to Unconfined Compressive Strength (σc) is proposed for JCS determination. In addition, this study investigates the Influence Zone of the LH test on surfaces with graded hardness profiles (e.g., weathered surfaces). This was done using a series of artificial composite plaster-rock specimens of known hardness to provide insight into the influence effects on the surface LD reading due to underlying material of contrasting hardness. In addition, a collection of natural rock specimens with variable joint wall hardness were collected and LD profiles were obtained by sequential surface grinding and testing. These natural rock specimens included those with wall surface materials softer and harder relative to the underlying intact rock. A Hardness Contrast Type was proposed for classification of hardness contrast conditions. The study findings showed the LH test is a suitable tool for predicting JCS and a proposed methodology was presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
里氏硬度测试作为评估接缝壁抗压强度(JCS)的工具
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
期刊最新文献
Rill erosion in post-seismic watershed – A non-negligible transporting way of fluvial sediment 3D high-density ambient noise imaging of the Nankou-Sunhe buried active fault in Beijing Automatic identification of rock fractures based on deep learning An improved rock damage model from a cyclic temperature – triaxial loading experiment for compressed air energy storage caverns Seismic and environmental controls on slow-moving landslides: Insights from the 2008 Wenchuan Earthquake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1