{"title":"Polystyrene microplastics exacerbate acetochlor-induced reproductive toxicity and transgenerational effects in zebrafish","authors":"Yang Wang, Chaofan Ma, Zenglong Chen, Yinping Guo, Yuan Jing, Xiaolei Chen, Hongwu Liang","doi":"10.1016/j.aquatox.2024.107208","DOIUrl":null,"url":null,"abstract":"Microplastic (MPs) can adsorb co-existing pollutants, and alter their behavior and toxicity. Meanwhile, amide herbicides like acetochlor (ACT) are widely used in agriculture, with potential endocrine-disrupting effects that raise ecological concerns. The aim of this research was to examine the effects of MPs on the reproductive endocrine disruption caused by ACT and the effects of maternal transmission. Zebrafish were employed in this study to assess the reproductive toxicity of ACT alone and in combination with polystyrene microplastics (PS-MPs) of different sizes (200 nm and 2 μm) and concentrations (0.1 and 1 mg/L) over a 63-day exposure experiment. The results indicated that ACT was concentrated in zebrafish tissues in the order: intestine > liver > gill > brain > gonad > muscle. PS-MPs increased ACT bioaccumulation, worsened gonadal damage, led to abnormalities in hormone levels, and caused disruptions in HPG axis gene expression, further exacerbating the reproductive toxicity. Maternal transfer of ACT affected offspring growth, thyroid function, and HPT axis gene expression, with nanoplastics (NPS) amplifying these adverse effects. This study offers crucial insights into the ecological hazards posed by ACT and PS-MPs, emphasizing the increased toxicity due to PS-MPs.","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"117 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.aquatox.2024.107208","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastic (MPs) can adsorb co-existing pollutants, and alter their behavior and toxicity. Meanwhile, amide herbicides like acetochlor (ACT) are widely used in agriculture, with potential endocrine-disrupting effects that raise ecological concerns. The aim of this research was to examine the effects of MPs on the reproductive endocrine disruption caused by ACT and the effects of maternal transmission. Zebrafish were employed in this study to assess the reproductive toxicity of ACT alone and in combination with polystyrene microplastics (PS-MPs) of different sizes (200 nm and 2 μm) and concentrations (0.1 and 1 mg/L) over a 63-day exposure experiment. The results indicated that ACT was concentrated in zebrafish tissues in the order: intestine > liver > gill > brain > gonad > muscle. PS-MPs increased ACT bioaccumulation, worsened gonadal damage, led to abnormalities in hormone levels, and caused disruptions in HPG axis gene expression, further exacerbating the reproductive toxicity. Maternal transfer of ACT affected offspring growth, thyroid function, and HPT axis gene expression, with nanoplastics (NPS) amplifying these adverse effects. This study offers crucial insights into the ecological hazards posed by ACT and PS-MPs, emphasizing the increased toxicity due to PS-MPs.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.