Comprehensive analysis of chromosome abnormalities by chromosome conformation based karyotyping (C-MoKa) in patients with conception failure and pregnancy loss.
{"title":"Comprehensive analysis of chromosome abnormalities by chromosome conformation based karyotyping (C-MoKa) in patients with conception failure and pregnancy loss.","authors":"Xiao Bao, Yuxia Yang, Wenbin Niu, Yimin Wang, Hao Shi, Yangyun Zou, Yidong Liu, Cheng Wan, Jun Ren, Sijia Lu, Yingpu Sun","doi":"10.1016/j.cca.2024.120089","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chromosome abnormalities are a leading cause of conception failure and pregnancy loss. While traditional cytogenetics technologies like karyotyping have been helpful in identifying structural variations (SVs), they face challenges in detecting complex rearrangements and cryptic structures. In this study, we developed a new method called chromosome conformation based karyotyping (C-MoKa) to comprehensively detect different types of chromosomal abnormalities in patients with conception failure and pregnancy loss.</p><p><strong>Methods: </strong>A total of 70 clinical samples exhibiting known results of SVs, mosaic aneuploidies, copy number variations (CNVs) and uniparental disomy (UPD) were included in our cohort and underwent C-MoKa analysis. The results obtained from different techniques, including karyotyping, CNV-seq, and CMA were compared and analyzed.</p><p><strong>Results: </strong>Distinct chromosomal conformation patterns of various variations were observed and analyzed in clinical samples. Our C-MoKa method not only validated all the findings of karyotyping, CNV-seq and CMA, but also provided more detailed results. It demonstrated superior fragment resolution (<500 Kb) and more precise breakpoints (>100 kb). Moreover, C-MoKa showed higher sensitivity in decoding intricate rearrangements in a single test.</p><p><strong>Conclusions: </strong>Our results highlight the potential utility of C-MoKa in precisely unraveling SVs, mosaic aneuploidies, CNVs, and UPD in clinical settings, which can significantly impact further clinical decision-making.</p>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":" ","pages":"120089"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cca.2024.120089","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Chromosome abnormalities are a leading cause of conception failure and pregnancy loss. While traditional cytogenetics technologies like karyotyping have been helpful in identifying structural variations (SVs), they face challenges in detecting complex rearrangements and cryptic structures. In this study, we developed a new method called chromosome conformation based karyotyping (C-MoKa) to comprehensively detect different types of chromosomal abnormalities in patients with conception failure and pregnancy loss.
Methods: A total of 70 clinical samples exhibiting known results of SVs, mosaic aneuploidies, copy number variations (CNVs) and uniparental disomy (UPD) were included in our cohort and underwent C-MoKa analysis. The results obtained from different techniques, including karyotyping, CNV-seq, and CMA were compared and analyzed.
Results: Distinct chromosomal conformation patterns of various variations were observed and analyzed in clinical samples. Our C-MoKa method not only validated all the findings of karyotyping, CNV-seq and CMA, but also provided more detailed results. It demonstrated superior fragment resolution (<500 Kb) and more precise breakpoints (>100 kb). Moreover, C-MoKa showed higher sensitivity in decoding intricate rearrangements in a single test.
Conclusions: Our results highlight the potential utility of C-MoKa in precisely unraveling SVs, mosaic aneuploidies, CNVs, and UPD in clinical settings, which can significantly impact further clinical decision-making.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.