Euihyun Kim, Dabin Cha, Sung Joo Jang, Jongki Cho, Sang Hyun Moh, Sanghoon Lee
{"title":"Redox control of NRF2 signaling in oocytes harnessing Porphyra derivatives as a toggle.","authors":"Euihyun Kim, Dabin Cha, Sung Joo Jang, Jongki Cho, Sang Hyun Moh, Sanghoon Lee","doi":"10.1016/j.freeradbiomed.2024.12.033","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the potential of Porphyra derivatives (PD), including Porphyra334, to activate the nuclear factor erythroid 2-related factor 2 (NRF2) pathway in porcine oocytes to enhance oocyte competency and intracellular networks. Conventional methods for manipulating mitochondrial and antioxidant pathways often rely upon genetic modifications that are impractical for direct application in humans. We hypothesized that PD serves as a natural regulator of the NRF2 pathway without requiring genetic intervention. To test this hypothesis, brusatol (Bru), a direct NRF2 inhibitor, was used to evaluate the specific role of PD in NRF2-mediated processes. The results demonstrated that PD significantly improved oocyte maturation, blastocyst formation, and mitochondrial function, including subsequent lipid metabolism. PD activates NRF2 and its downstream antioxidant response elements (AREs), whereas Bru inhibits these effects. Co-treatment with PD and Bru resulted in the partial recovery of NRF2 activity. These findings suggest that PD functions as a toggle for NRF2 activation, potentially offering a non-genetic strategy for enhancing oocyte quality and embryo development by modulating antioxidant mechanisms and mitochondrial functions. This study provides new avenues for investigating natural compounds in the context of reproductive biology and assisted reproduction technologies (ARTs).</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2024.12.033","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the potential of Porphyra derivatives (PD), including Porphyra334, to activate the nuclear factor erythroid 2-related factor 2 (NRF2) pathway in porcine oocytes to enhance oocyte competency and intracellular networks. Conventional methods for manipulating mitochondrial and antioxidant pathways often rely upon genetic modifications that are impractical for direct application in humans. We hypothesized that PD serves as a natural regulator of the NRF2 pathway without requiring genetic intervention. To test this hypothesis, brusatol (Bru), a direct NRF2 inhibitor, was used to evaluate the specific role of PD in NRF2-mediated processes. The results demonstrated that PD significantly improved oocyte maturation, blastocyst formation, and mitochondrial function, including subsequent lipid metabolism. PD activates NRF2 and its downstream antioxidant response elements (AREs), whereas Bru inhibits these effects. Co-treatment with PD and Bru resulted in the partial recovery of NRF2 activity. These findings suggest that PD functions as a toggle for NRF2 activation, potentially offering a non-genetic strategy for enhancing oocyte quality and embryo development by modulating antioxidant mechanisms and mitochondrial functions. This study provides new avenues for investigating natural compounds in the context of reproductive biology and assisted reproduction technologies (ARTs).
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.