Pub Date : 2025-02-11DOI: 10.1016/j.freeradbiomed.2025.02.011
Jie Li, Yu-Chen Jia, Haoyu Zhang, Zheng Wang, Yixuan Ding, Feng Cao, Gang Wang, Fei Li
Ferroptosis is a mode of programmed cell death that plays an important role in an increasing number of diseases. Recently, ferroptosis was found to be involved in the pathology of acute pancreatitis (AP). We determined that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in the ferroptosis process in AP. By inhibiting Nrf2 expression, the death of acinar cells in AP can be increased. Therefore, to help treat AP to a certain extent, we analyzed the effects of astaxanthin and found that it can activate Nrf2 and reduce the pathological process of AP. The activation of Nrf2 improves defective autophagy in AP and inhibits ferroptosis in acinar cells. Specifically, Nrf2 can promote the expression of Gpx4 and ferritin, and can inhibit the formation of Beclin-Slc7a11 complex by improving autophagy, thereby increasing the membrane expression of Slc7a11. Slc7a11/Gpx4 is an important anti-ferroptosis pathway; Slc7a11 can promote the synthesis of glutathione, while Gpx4 can utilize glutathione to exert antioxidative effects. Thus, we demonstrated that Nrf2 activation not only ameliorated defective autophagy at the time of AP but also promoted membrane expression of Slc7a11 to inhibit ferroptosis in acinar cells, thereby alleviating AP.
{"title":"Nrf2 ameliorates defective autophagic processes and thereby inhibits ferroptosis in acute pancreatitis by suppressing Beclin1-Slc7a11 complex formation.","authors":"Jie Li, Yu-Chen Jia, Haoyu Zhang, Zheng Wang, Yixuan Ding, Feng Cao, Gang Wang, Fei Li","doi":"10.1016/j.freeradbiomed.2025.02.011","DOIUrl":"https://doi.org/10.1016/j.freeradbiomed.2025.02.011","url":null,"abstract":"<p><p>Ferroptosis is a mode of programmed cell death that plays an important role in an increasing number of diseases. Recently, ferroptosis was found to be involved in the pathology of acute pancreatitis (AP). We determined that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in the ferroptosis process in AP. By inhibiting Nrf2 expression, the death of acinar cells in AP can be increased. Therefore, to help treat AP to a certain extent, we analyzed the effects of astaxanthin and found that it can activate Nrf2 and reduce the pathological process of AP. The activation of Nrf2 improves defective autophagy in AP and inhibits ferroptosis in acinar cells. Specifically, Nrf2 can promote the expression of Gpx4 and ferritin, and can inhibit the formation of Beclin-Slc7a11 complex by improving autophagy, thereby increasing the membrane expression of Slc7a11. Slc7a11/Gpx4 is an important anti-ferroptosis pathway; Slc7a11 can promote the synthesis of glutathione, while Gpx4 can utilize glutathione to exert antioxidative effects. Thus, we demonstrated that Nrf2 activation not only ameliorated defective autophagy at the time of AP but also promoted membrane expression of Slc7a11 to inhibit ferroptosis in acinar cells, thereby alleviating AP.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11DOI: 10.1016/j.freeradbiomed.2025.02.014
Wen Xu, Yujie Li, Sheng Wan, Beilei Zhang, Dongfan Wei, Hongyan Zhang, Xiaofan Jin, Bo Xie, Cuiping Guan, Xiuzu Song
Chemotherapy-induced alopecia (CIA), commonly associated with agents such as cyclophosphamide (CYP), is a prevalent and distressing side effect of numerous chemotherapeutic treatments, significantly impacting patients' quality of life. S100A8, a calcium-binding protein involved in inflammatory responses and oxidative stress regulation, plays a pivotal role in cellular homeostasis. In this study, we investigated the involvement of S100A8 in ferroptosis within a CYP-induced CIA mouse model. We found that CYP treatment upregulated S100A8, NCF2, and NOX2 while reducing GPX4 levels in hair follicles, indicating elevated oxidative stress and ferroptosis. Administration of the S100A8 inhibitor paquinimod (PAQ) alleviated alopecia and decreased markers of oxidative stress and ferroptosis. In vitro experiments using human outer root sheath keratinocytes (ORSKs) confirmed that S100A8 promotes ferroptosis via the NCF2/NOX2 pathway, as inhibition of NCF2 or NOX2 reversed these effects. These findings suggest that targeting the S100A8-NCF2/NOX2 axis may provide a novel therapeutic strategy for mitigating CIA induced by various chemotherapeutic agents.
{"title":"S100A8 induces Cyclophosphamide-Induced Alopecia via NCF2/NOX2-Mediated Ferroptosis.","authors":"Wen Xu, Yujie Li, Sheng Wan, Beilei Zhang, Dongfan Wei, Hongyan Zhang, Xiaofan Jin, Bo Xie, Cuiping Guan, Xiuzu Song","doi":"10.1016/j.freeradbiomed.2025.02.014","DOIUrl":"https://doi.org/10.1016/j.freeradbiomed.2025.02.014","url":null,"abstract":"<p><p>Chemotherapy-induced alopecia (CIA), commonly associated with agents such as cyclophosphamide (CYP), is a prevalent and distressing side effect of numerous chemotherapeutic treatments, significantly impacting patients' quality of life. S100A8, a calcium-binding protein involved in inflammatory responses and oxidative stress regulation, plays a pivotal role in cellular homeostasis. In this study, we investigated the involvement of S100A8 in ferroptosis within a CYP-induced CIA mouse model. We found that CYP treatment upregulated S100A8, NCF2, and NOX2 while reducing GPX4 levels in hair follicles, indicating elevated oxidative stress and ferroptosis. Administration of the S100A8 inhibitor paquinimod (PAQ) alleviated alopecia and decreased markers of oxidative stress and ferroptosis. In vitro experiments using human outer root sheath keratinocytes (ORSKs) confirmed that S100A8 promotes ferroptosis via the NCF2/NOX2 pathway, as inhibition of NCF2 or NOX2 reversed these effects. These findings suggest that targeting the S100A8-NCF2/NOX2 axis may provide a novel therapeutic strategy for mitigating CIA induced by various chemotherapeutic agents.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11DOI: 10.1016/j.freeradbiomed.2025.02.007
Shivanshu Kumar Tiwari, Aneesh Chandrasekharan, Santhik Subhasingh Lupitha, Krupa Ann Mathew, Shine Varghese Jancy, Aman Munirpasha Halikar, Vishnu S Sanjeev, K C Sivakumar, Tilak Prasad, K G Anurup, Aijaz Ahmad Rather, Jain Tiffee P J, Aparna Geetha Jayaprasad, Aswathy Sivasailam, T R Santhoshkumar
Tumor hypoxia determines tumor growth, metastasis, drug resistance, and tumor heterogeneity through multiple mechanisms, largely dependent on the extent of hypoxia, further modulated by re-oxygenation events. In order to track the cell fates under hypoxia and re-oxygenation, we have developed a sensor cell for real-time tracking of apoptotic, necrotic, and surviving mitophagy cells under hypoxia and re-oxygenation. The study using this sensor revealed a cell death switch from apoptosis to necrosis by hypoxia-exposed cells under re-oxygenation, where mitophagy plays a key role in acquiring temporally evolving functional phenotypes, including metabolic heterogeneity and mitochondrial redox heterogeneity. RNA transcriptomics also revealed a temporally evolving genomic landscape supporting the complex transcriptional plasticity of cells as a non-genetic adaptive event. Interestingly, cells regained from these distinct stages retained their metastatic potential despite slow growth in animal models. Overall, the study demonstrated that cells acquire distinct functions by tumor hypoxia and re-oxygenation, secondarily acquiring transient functional traits and metabolic heterogeneity governed by cell inherent mitochondrial dynamics. Such cell autonomous temporal alterations in cell states governed by organelle integrity with distinct cell proliferation and apoptosis-necrosis switch may be advantageous for the growing tumor to evolve under complex microenvironmental stress, further contributing to tumorigenesis.
{"title":"HYPOXIA INDUCED MITOPHAGY GENERATES REVERSIBLE METABOLIC AND REDOX HETEROGENEITY WITH TRANSIENT CELL DEATH SWITCH DRIVING TUMORIGENESIS.","authors":"Shivanshu Kumar Tiwari, Aneesh Chandrasekharan, Santhik Subhasingh Lupitha, Krupa Ann Mathew, Shine Varghese Jancy, Aman Munirpasha Halikar, Vishnu S Sanjeev, K C Sivakumar, Tilak Prasad, K G Anurup, Aijaz Ahmad Rather, Jain Tiffee P J, Aparna Geetha Jayaprasad, Aswathy Sivasailam, T R Santhoshkumar","doi":"10.1016/j.freeradbiomed.2025.02.007","DOIUrl":"https://doi.org/10.1016/j.freeradbiomed.2025.02.007","url":null,"abstract":"<p><p>Tumor hypoxia determines tumor growth, metastasis, drug resistance, and tumor heterogeneity through multiple mechanisms, largely dependent on the extent of hypoxia, further modulated by re-oxygenation events. In order to track the cell fates under hypoxia and re-oxygenation, we have developed a sensor cell for real-time tracking of apoptotic, necrotic, and surviving mitophagy cells under hypoxia and re-oxygenation. The study using this sensor revealed a cell death switch from apoptosis to necrosis by hypoxia-exposed cells under re-oxygenation, where mitophagy plays a key role in acquiring temporally evolving functional phenotypes, including metabolic heterogeneity and mitochondrial redox heterogeneity. RNA transcriptomics also revealed a temporally evolving genomic landscape supporting the complex transcriptional plasticity of cells as a non-genetic adaptive event. Interestingly, cells regained from these distinct stages retained their metastatic potential despite slow growth in animal models. Overall, the study demonstrated that cells acquire distinct functions by tumor hypoxia and re-oxygenation, secondarily acquiring transient functional traits and metabolic heterogeneity governed by cell inherent mitochondrial dynamics. Such cell autonomous temporal alterations in cell states governed by organelle integrity with distinct cell proliferation and apoptosis-necrosis switch may be advantageous for the growing tumor to evolve under complex microenvironmental stress, further contributing to tumorigenesis.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143412932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11DOI: 10.1016/j.freeradbiomed.2025.02.010
Shuwei Ning, Jianhui Li, Mei He, Yuexin Yu, Zhikun Guo
The clinical use of the anticancer drug doxorubicin (DOX) is limited due to its time- and dose-dependent cardiotoxicity. Therefore, there is an urgent need to explore the molecular mechanism and coping strategies for alleviating DOX-induced cardiotoxicity (DIC) and solve the difficulties in clinical application. The role and mechanism of androgen receptor (AR), which is the target of androgen, in DIC remain unclear. Here, we elucidated the molecular mechanisms of AR in DOX-induced cardiotoxicity. Inhibition of AR aggravated the DOX-induced cardiac function impairment, while the activation of AR showed obvious therapeutic effect and rescued cardiac function of rats. AR can physically interact with SERCA2a. Activation of AR participates in the regulation of DOX-induced myocardial injury by modulating SERCA2a, attenuating DOX-induced endoplasmic reticulum stress, improving calcium (Ca2+) cycling homeostasis, and inhibiting ROS levels and apoptosis, thereby participating in the regulation of DOX induced myocardial injury. Altogether, these findings reveal for the first time the relationship and role between AR and SERCA2a in regulating the progression of DIC, suggesting that AR may play a therapeutic role as a new target against DIC.
{"title":"Androgen receptor alleviates doxorubicin-induced endoplasmic reticulum stress and myocardial injury by interacting with SERCA2a.","authors":"Shuwei Ning, Jianhui Li, Mei He, Yuexin Yu, Zhikun Guo","doi":"10.1016/j.freeradbiomed.2025.02.010","DOIUrl":"https://doi.org/10.1016/j.freeradbiomed.2025.02.010","url":null,"abstract":"<p><p>The clinical use of the anticancer drug doxorubicin (DOX) is limited due to its time- and dose-dependent cardiotoxicity. Therefore, there is an urgent need to explore the molecular mechanism and coping strategies for alleviating DOX-induced cardiotoxicity (DIC) and solve the difficulties in clinical application. The role and mechanism of androgen receptor (AR), which is the target of androgen, in DIC remain unclear. Here, we elucidated the molecular mechanisms of AR in DOX-induced cardiotoxicity. Inhibition of AR aggravated the DOX-induced cardiac function impairment, while the activation of AR showed obvious therapeutic effect and rescued cardiac function of rats. AR can physically interact with SERCA2a. Activation of AR participates in the regulation of DOX-induced myocardial injury by modulating SERCA2a, attenuating DOX-induced endoplasmic reticulum stress, improving calcium (Ca<sup>2+</sup>) cycling homeostasis, and inhibiting ROS levels and apoptosis, thereby participating in the regulation of DOX induced myocardial injury. Altogether, these findings reveal for the first time the relationship and role between AR and SERCA2a in regulating the progression of DIC, suggesting that AR may play a therapeutic role as a new target against DIC.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143412750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adults older than 45 years old are at higher risk of developing venous blood clotting known as venous thrombosis/thromboembolism than a cohort < 45 years old. Complement activation, which can be mediated by oxidative stress, plays a central role in venous thrombosis. Yet, whether RBCs contribute to complement activation triggering thrombosis in aging and in patients with venous thrombosis/thromboembolism remains an open question. RBCs from healthy Mid-life stage (55-68 years old) adults and patients with venous thrombosis/thromboembolism showed higher deposition of the complement C3 and the anaphylatoxin C3a, and NADPH oxidase (Nox)1 expression than a younger cohort (21-30 years old). Increased C3/C3a deposition on RBCs from mid-life stage adults and patients with venous thrombosis/thromboembolism triggered prothrombin activation via Nox1-dependent reactive oxygen species (ROS) generation, and G protein-coupled receptor kinase 2 (GRK2) activation. Interaction of C3/C3a positive RBCs from mid-life stage adults with endothelial cells led to increased endothelial ROS production. TGF-β1-stimulated GRK2 and Nox1 activation in RBCs from the younger and older adults exacerbated RBC C3/C3a deposition and C3/C3a-mediated prothrombotic activation, which appears to result from ROS-mediated increased RBC phosphatidylserine exposure. Using human RBCs, and Rpl13a snoRNA knockout aged mice, we show that Rpl13a snoRNAs, the master regulators of ROS levels and oxidative stress response, regulate human and murine RBC C3a deposition and prothrombic activation in aging by modulating Nox1 mRNA expression. In vivo Rpl13a snoRNA knockout in aged mice decreased thrombi size by blunting RBC C3a deposition, and RBCs-triggering prothrombin activation. These findings point out to a novel role of RBC Rpl13a snoRNAs in dysregulating RBC ROS-induced C3a deposition promoting venous thrombosis in aging.
{"title":"Rpl13a snoRNAs-regulated NADPH oxidase 1-dependent ROS generation: A novel RBC pathway mediating complement C3a deposition and triggering thrombosis in aging and venous blood clotting disorders.","authors":"Waseem Chauhan, Shirin Ferdowsi, Sudharshan Sj, Rahima Zennadi","doi":"10.1016/j.freeradbiomed.2025.02.008","DOIUrl":"https://doi.org/10.1016/j.freeradbiomed.2025.02.008","url":null,"abstract":"<p><p>Adults older than 45 years old are at higher risk of developing venous blood clotting known as venous thrombosis/thromboembolism than a cohort < 45 years old. Complement activation, which can be mediated by oxidative stress, plays a central role in venous thrombosis. Yet, whether RBCs contribute to complement activation triggering thrombosis in aging and in patients with venous thrombosis/thromboembolism remains an open question. RBCs from healthy Mid-life stage (55-68 years old) adults and patients with venous thrombosis/thromboembolism showed higher deposition of the complement C3 and the anaphylatoxin C3a, and NADPH oxidase (Nox)1 expression than a younger cohort (21-30 years old). Increased C3/C3a deposition on RBCs from mid-life stage adults and patients with venous thrombosis/thromboembolism triggered prothrombin activation via Nox1-dependent reactive oxygen species (ROS) generation, and G protein-coupled receptor kinase 2 (GRK2) activation. Interaction of C3/C3a positive RBCs from mid-life stage adults with endothelial cells led to increased endothelial ROS production. TGF-β1-stimulated GRK2 and Nox1 activation in RBCs from the younger and older adults exacerbated RBC C3/C3a deposition and C3/C3a-mediated prothrombotic activation, which appears to result from ROS-mediated increased RBC phosphatidylserine exposure. Using human RBCs, and Rpl13a snoRNA knockout aged mice, we show that Rpl13a snoRNAs, the master regulators of ROS levels and oxidative stress response, regulate human and murine RBC C3a deposition and prothrombic activation in aging by modulating Nox1 mRNA expression. In vivo Rpl13a snoRNA knockout in aged mice decreased thrombi size by blunting RBC C3a deposition, and RBCs-triggering prothrombin activation. These findings point out to a novel role of RBC Rpl13a snoRNAs in dysregulating RBC ROS-induced C3a deposition promoting venous thrombosis in aging.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-08DOI: 10.1016/j.freeradbiomed.2025.02.004
Alfonso Gómez Del Val, Ana Sánchez, Óscar Freire-Agulleiro, María Pilar Martínez, Mercedes Muñoz, Lucia Olmos, Javier Sáenz Medina, Gabriel Comerma-Steffensen, Ulf Simonsen, Luis Rivera, Miguel López, Cristina Contreras, Dolores Prieto
Objective: Erectile dysfunction (ED) is considered an early manifestation of cardiovascular disease (CVD), endothelial dysfunction being the link between CVD and vasculogenic ED. Mitochondrial reactive oxygen species (mtROS) have been involved in the vascular complications of metabolic disorders. The aim of this study was to assess the impact of obesity on endothelial function, redox metabolism and mitochondrial bioenergetics of penile erectile tissue.
Methods: Wistar rats were fed a high-fat diet (HFD) or standard diet (STD), and penile vascular function was assessed in microvascular myographs. mtROS levels were measured by mitoSOX (O2.-) and Amplex Red (H2O2) fluorimetry, and the effect of the mitochondrial antioxidant mitoTempo on endothelium-dependent relaxations was tested. Mitochondrial respiration of intact microarteries was assessed with an Agilent Seahorse XF Pro analyzer, and the expression of mitochondria regulators and endoplasmic reticulum (ER) stress markers was analyzed by Western blot.
Results: Endothelium-dependent relaxations to acetylcholine (ACh) and to the mitoKATP channel activator BMS191095 were reduced in penile arteries from HFD. mtROS levels were significantly increased and associated with upregulation of the endothelial NADPH oxidase 4 (Nox4) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in HFD erectile tissue. MitoTempo inhibited endothelial relaxations in control and HFD penile arteries. The bioenergetic profile was significantly reduced in HFD penile arteries. Protein expression of ER stress markers was enhanced in erectile tissue of obese rats.
Conclusions: Mitochondrial dysfunction with impaired bioenergetics and reduced mitoKATP channel-mediated relaxation underlie endothelial and vascular dysfunction of erectile tissue in obesity, despite a compensatory mechanism that enhances Nox4-derived endothelial vasodilator mtROS. Therapeutic strategies aimed to stabilize mitochondria could restore redox balance and improve mitochondrial bioenergetics thus preventing oxidative stress and vascular dysfunction underlying metabolic disease associated ED.
目的:勃起功能障碍(ED)被认为是心血管疾病(CVD)的早期表现:勃起功能障碍(ED)被认为是心血管疾病(CVD)的早期表现,内皮功能障碍是连接心血管疾病和血管性 ED 的纽带。线粒体活性氧(mtROS)与代谢紊乱引起的血管并发症有关。本研究旨在评估肥胖对阴茎勃起组织内皮功能、氧化还原代谢和线粒体生物能的影响:用 mitoSOX(O2.-)和 Amplex Red(H2O2)荧光测定法测量 mtROS 水平,并检测线粒体抗氧化剂 mitoTempo 对内皮依赖性松弛的影响。用 Agilent Seahorse XF Pro 分析仪评估了完整微动脉的线粒体呼吸,并通过 Western 印迹分析了线粒体调节因子和内质网(ER)应激标记物的表达:HFD阴茎动脉对乙酰胆碱(ACh)和线粒体KATP通道激活剂BMS191095的内皮依赖性松弛作用降低。在HFD勃起组织中,mtROS水平显著升高,并与内皮NADPH氧化酶4(Nox4)和过氧化物酶体增殖激活受体γ辅助激活剂1-α(PGC-1α)的上调有关。MitoTempo 可抑制对照组和高脂蛋白血症阴茎动脉的内皮松弛。HFD阴茎动脉的生物能谱明显降低。在肥胖大鼠的勃起组织中,ER应激标记物的蛋白表达增强:结论:线粒体功能障碍、生物能受损和线粒体KATP通道介导的松弛功能降低是肥胖症患者勃起组织内皮和血管功能障碍的原因,尽管有一种补偿机制可增强Nox4衍生的内皮血管扩张剂mtROS。旨在稳定线粒体的治疗策略可以恢复氧化还原平衡,改善线粒体的生物能,从而预防氧化应激和血管功能障碍,这些都是与代谢性疾病相关的 ED 的根本原因。
{"title":"Penile endothelial dysfunction, impaired redox metabolism and blunted mitochondrial bioenergetics in diet-induced obesity: compensatory role of H<sub>2</sub>O<sub>2</sub>.","authors":"Alfonso Gómez Del Val, Ana Sánchez, Óscar Freire-Agulleiro, María Pilar Martínez, Mercedes Muñoz, Lucia Olmos, Javier Sáenz Medina, Gabriel Comerma-Steffensen, Ulf Simonsen, Luis Rivera, Miguel López, Cristina Contreras, Dolores Prieto","doi":"10.1016/j.freeradbiomed.2025.02.004","DOIUrl":"https://doi.org/10.1016/j.freeradbiomed.2025.02.004","url":null,"abstract":"<p><strong>Objective: </strong>Erectile dysfunction (ED) is considered an early manifestation of cardiovascular disease (CVD), endothelial dysfunction being the link between CVD and vasculogenic ED. Mitochondrial reactive oxygen species (mtROS) have been involved in the vascular complications of metabolic disorders. The aim of this study was to assess the impact of obesity on endothelial function, redox metabolism and mitochondrial bioenergetics of penile erectile tissue.</p><p><strong>Methods: </strong>Wistar rats were fed a high-fat diet (HFD) or standard diet (STD), and penile vascular function was assessed in microvascular myographs. mtROS levels were measured by mitoSOX (O<sub>2</sub><sup>.-</sup>) and Amplex Red (H<sub>2</sub>O<sub>2</sub>) fluorimetry, and the effect of the mitochondrial antioxidant mitoTempo on endothelium-dependent relaxations was tested. Mitochondrial respiration of intact microarteries was assessed with an Agilent Seahorse XF Pro analyzer, and the expression of mitochondria regulators and endoplasmic reticulum (ER) stress markers was analyzed by Western blot.</p><p><strong>Results: </strong>Endothelium-dependent relaxations to acetylcholine (ACh) and to the mitoK<sub>ATP</sub> channel activator BMS191095 were reduced in penile arteries from HFD. mtROS levels were significantly increased and associated with upregulation of the endothelial NADPH oxidase 4 (Nox4) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in HFD erectile tissue. MitoTempo inhibited endothelial relaxations in control and HFD penile arteries. The bioenergetic profile was significantly reduced in HFD penile arteries. Protein expression of ER stress markers was enhanced in erectile tissue of obese rats.</p><p><strong>Conclusions: </strong>Mitochondrial dysfunction with impaired bioenergetics and reduced mitoK<sub>ATP</sub> channel-mediated relaxation underlie endothelial and vascular dysfunction of erectile tissue in obesity, despite a compensatory mechanism that enhances Nox4-derived endothelial vasodilator mtROS. Therapeutic strategies aimed to stabilize mitochondria could restore redox balance and improve mitochondrial bioenergetics thus preventing oxidative stress and vascular dysfunction underlying metabolic disease associated ED.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-07DOI: 10.1016/j.freeradbiomed.2025.02.006
Annabel Simpson, Andrea M Pilotto, Lorenza Brocca, Raffaele Mazzolari, Bob T Rosier, Miguel Carda-Diéguez, Patricia Casas-Agustench, Raul Bescos, Simone Porcelli, Alex Mira, Chris Easton, Fiona L Henriquez, Mia Burleigh
Nitric oxide (*NO) is a key signalling molecule, produced enzymatically via *NO synthases (NOS) or following the stepwise reduction of nitrate to nitrite via oral bacteria. Exercise training upregulates NOS expression and improves systemic health, but its effect on oral health, and more particularly the oral microbiome, has not been investigated. We used an exercise training study design to investigate changes in the tongue dorsum microbiome, and in nitrate and nitrite levels in the saliva, plasma and muscle, before, during and after an exercise training period. Eleven untrained males (age 25 ± 5 years, mass 64.0 ± 11.2 kg, stature 171 ± 6 cm, O2peak 2.25 ± 0.42 l·min-1) underwent 8-weeks of high-intensity interval training (HIIT), followed by 12-weeks of detraining. The tongue dorsum microbiome was examined using Pac-Bio long-read 16S rRNA sequencing. Nitrate and nitrite levels were quantified with high-performance liquid chromatography. Grouped nitrite-producing species did not change between any timepoints. However, HIIT led to changes in the microbiome composition, increasing the relative abundance of some, but not all, nitrite-producing species. These changes included a decrease in the relative abundance of nitrite-producing Rothia and a decrease in Neisseria, alongside changes in 6 other bacteria at the genus level (all p≤0.05). At the species level, the abundance of 9 bacteria increased post-training (all p≤0.05), 5 of which have nitrite-producing capacity, including Rothia mucilaginosa and Streptococcus salivarius. Post-detraining, 6 nitrite-producing species remained elevated relative to baseline. Nitrate increased in plasma (p=0.03) following training. Nitrite increased in the saliva after training (p=0.02) but decreased in plasma (p=0.03) and muscle (p=0.002). High-intensity exercise training increased the abundance of several nitrite-producing bacteria and altered nitrate and nitrite levels in saliva, plasma, and muscle. Post-detraining, several nitrite-producing bacteria remained elevated relative to baseline, but no significant differences were detected in nitrate or nitrite levels. Switching from a sedentary to an active lifestyle alters both the microbiome of the tongue and the bioavailability of nitrate and nitrite, with potential implications for oral and systemic health.
{"title":"Eight Weeks of High-Intensity Interval Training Alters the Tongue Microbiome and Impacts Nitrate and Nitrite Levels in Previously Sedentary Men.","authors":"Annabel Simpson, Andrea M Pilotto, Lorenza Brocca, Raffaele Mazzolari, Bob T Rosier, Miguel Carda-Diéguez, Patricia Casas-Agustench, Raul Bescos, Simone Porcelli, Alex Mira, Chris Easton, Fiona L Henriquez, Mia Burleigh","doi":"10.1016/j.freeradbiomed.2025.02.006","DOIUrl":"https://doi.org/10.1016/j.freeradbiomed.2025.02.006","url":null,"abstract":"<p><p>Nitric oxide (*NO) is a key signalling molecule, produced enzymatically via *NO synthases (NOS) or following the stepwise reduction of nitrate to nitrite via oral bacteria. Exercise training upregulates NOS expression and improves systemic health, but its effect on oral health, and more particularly the oral microbiome, has not been investigated. We used an exercise training study design to investigate changes in the tongue dorsum microbiome, and in nitrate and nitrite levels in the saliva, plasma and muscle, before, during and after an exercise training period. Eleven untrained males (age 25 ± 5 years, mass 64.0 ± 11.2 kg, stature 171 ± 6 cm, O<sub>2peak</sub> 2.25 ± 0.42 l·min<sup>-1</sup>) underwent 8-weeks of high-intensity interval training (HIIT), followed by 12-weeks of detraining. The tongue dorsum microbiome was examined using Pac-Bio long-read 16S rRNA sequencing. Nitrate and nitrite levels were quantified with high-performance liquid chromatography. Grouped nitrite-producing species did not change between any timepoints. However, HIIT led to changes in the microbiome composition, increasing the relative abundance of some, but not all, nitrite-producing species. These changes included a decrease in the relative abundance of nitrite-producing Rothia and a decrease in Neisseria, alongside changes in 6 other bacteria at the genus level (all p≤0.05). At the species level, the abundance of 9 bacteria increased post-training (all p≤0.05), 5 of which have nitrite-producing capacity, including Rothia mucilaginosa and Streptococcus salivarius. Post-detraining, 6 nitrite-producing species remained elevated relative to baseline. Nitrate increased in plasma (p=0.03) following training. Nitrite increased in the saliva after training (p=0.02) but decreased in plasma (p=0.03) and muscle (p=0.002). High-intensity exercise training increased the abundance of several nitrite-producing bacteria and altered nitrate and nitrite levels in saliva, plasma, and muscle. Post-detraining, several nitrite-producing bacteria remained elevated relative to baseline, but no significant differences were detected in nitrate or nitrite levels. Switching from a sedentary to an active lifestyle alters both the microbiome of the tongue and the bioavailability of nitrate and nitrite, with potential implications for oral and systemic health.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06DOI: 10.1016/j.freeradbiomed.2025.02.003
Fei Han , Ya Dong , Qiaoyan Liu , Linling Song , Hang Guo , Lingling Zhu , Bei Sun , Wei Zhao , Liming Chen
Protein S-nitrosylation (SNO), a redox-based posttranslational modification of cysteine thiols, plays a crucial role in various signaling pathways. Peroxiredoxin 2 (PRDX2) is one of the most potent ROS scavenging proteins, providing protection against oxidative stress damage, with its function regulated by SNO. However, the precise role of SNO-PRDX2 in hyperuricemic nephropathy remains poorly understood. In this study, we identified PRDX2 as a highly S-nitrosylated target in hyperuricemic nephropathy using a biotin switch assay. The elevation of SNO-PRDX2 was observed in kidneys of hyperuricemic mice as well as in uric acid (UA)-treated human renal tubular epithelial (HK-2) cells. S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, induced SNO modification of PRDX2, promoting mitochondrial dysfunction, oxidative stress, and cell apoptosis in HK-2 cells. Transfection with a plasmid containing a mutated cysteine 172 (Cys172) of PRDX2 yielded a decrease in SNO-PRDX2 levels in both hyperuricemic mice and UA-cultured HK-2 cells. Furthermore, administration of adeno-associated viruses carrying the Cys172-mutated PRDX2 significantly ameliorated renal interstitial fibrosis and reduced mitochondrial dysfunction, oxidative stress, and cell apoptosis in HUA-treated mice. In conclusion, our findings indicate that SNO modification of PRDX2 at Cys172 mediates HUA-induced kidney interstitial fibrosis, suggesting that SNO-PRDX2 may serve as a potential therapeutic target for HUA-induced renal injury.
{"title":"S-nitrosylation of peroxiredoxin 2 exacerbates hyperuricemia-induced renal injury through regulation of mitochondrial homeostasis","authors":"Fei Han , Ya Dong , Qiaoyan Liu , Linling Song , Hang Guo , Lingling Zhu , Bei Sun , Wei Zhao , Liming Chen","doi":"10.1016/j.freeradbiomed.2025.02.003","DOIUrl":"10.1016/j.freeradbiomed.2025.02.003","url":null,"abstract":"<div><div>Protein S-nitrosylation (SNO), a redox-based posttranslational modification of cysteine thiols, plays a crucial role in various signaling pathways. Peroxiredoxin 2 (PRDX2) is one of the most potent ROS scavenging proteins, providing protection against oxidative stress damage, with its function regulated by SNO. However, the precise role of SNO-PRDX2 in hyperuricemic nephropathy remains poorly understood. In this study, we identified PRDX2 as a highly S-nitrosylated target in hyperuricemic nephropathy using a biotin switch assay. The elevation of SNO-PRDX2 was observed in kidneys of hyperuricemic mice as well as in uric acid (UA)-treated human renal tubular epithelial (HK-2) cells. S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, induced SNO modification of PRDX2, promoting mitochondrial dysfunction, oxidative stress, and cell apoptosis in HK-2 cells. Transfection with a plasmid containing a mutated cysteine 172 (Cys172) of PRDX2 yielded a decrease in SNO-PRDX2 levels in both hyperuricemic mice and UA-cultured HK-2 cells. Furthermore, administration of adeno-associated viruses carrying the Cys172-mutated PRDX2 significantly ameliorated renal interstitial fibrosis and reduced mitochondrial dysfunction, oxidative stress, and cell apoptosis in HUA-treated mice. In conclusion, our findings indicate that SNO modification of PRDX2 at Cys172 mediates HUA-induced kidney interstitial fibrosis, suggesting that SNO-PRDX2 may serve as a potential therapeutic target for HUA-induced renal injury.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"230 ","pages":"Pages 66-78"},"PeriodicalIF":7.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06DOI: 10.1016/j.freeradbiomed.2025.02.005
Oliver F. Eberle , Frederick Hartung , Paul Benndorf , Thomas Haarmann-Stemmann
Exposure to combustion-derived airborne polycyclic aromatic hydrocarbons (PAHs) may harm human skin, exacerbate cutaneous inflammatory diseases and accelerate skin aging. The toxicity of PAHs is unleashed upon their metabolic activation by cytochrome P450 (CYP) 1 monooxygenases, resulting in the formation of reactive intermediates that form mutagenic DNA adducts. Moreover, PAHs cause oxidative stress, which is primarily due to aldo-keto reductases (AKRs), such as AKR1C3, which convert CYP1-derived PAH-trans-diols to PAH-catechols. The catechols undergo autooxidation leading to the formation of reactive oxygen species (ROS) and PAH-quinones. The latter are highly reactive, mitotoxic and are reduced back to PAH-catechols, thus facilitating redox cycling. As AKR1C expression is inducible by other NRF2-stimulating chemicals, we tested the hypothesis that co-exposure of HaCaT keratinocytes to skin sensitizers and the PAH benzo[a]pyrene (BaP) enhances ROS formation. We observed a synergistic effect of the skin sensitizers on the BaP-induced expression of the NRF2 target genes heme oxygenase-1, sulfiredoxin-1 and AKR1C3. In fact, co-exposure to the skin sensitizers also enhanced the BaP-induced formation of superoxide anions. Intriguingly, the co-exposure-related ROS formation was abolished upon inhibition of either CYP1A1 or AKR1C3. Testing of additional skin-sensitizing compounds, differing in their mode of action, indicated that especially potent Michael acceptors enhance the toxicity of BaP by increasing AKR1C3 expression and, presumably, downstream BaP-quinone formation. Our study reveals potential health risks associated with the simultaneous exposure to common skin-sensitizing substances and ubiquitous PAHs, and implies a role for NRF2 in mediating PAH toxicity.
{"title":"Skin sensitizers enhance superoxide formation by polycyclic aromatic hydrocarbons via the aldo-keto reductase pathway","authors":"Oliver F. Eberle , Frederick Hartung , Paul Benndorf , Thomas Haarmann-Stemmann","doi":"10.1016/j.freeradbiomed.2025.02.005","DOIUrl":"10.1016/j.freeradbiomed.2025.02.005","url":null,"abstract":"<div><div>Exposure to combustion-derived airborne polycyclic aromatic hydrocarbons (PAHs) may harm human skin, exacerbate cutaneous inflammatory diseases and accelerate skin aging. The toxicity of PAHs is unleashed upon their metabolic activation by cytochrome P450 (CYP) 1 monooxygenases, resulting in the formation of reactive intermediates that form mutagenic DNA adducts. Moreover, PAHs cause oxidative stress, which is primarily due to aldo-keto reductases (AKRs), such as AKR1C3, which convert CYP1-derived PAH-<em>trans</em>-diols to PAH-catechols. The catechols undergo autooxidation leading to the formation of reactive oxygen species (ROS) and PAH-quinones. The latter are highly reactive, mitotoxic and are reduced back to PAH-catechols, thus facilitating redox cycling. As AKR1C expression is inducible by other NRF2-stimulating chemicals, we tested the hypothesis that co-exposure of HaCaT keratinocytes to skin sensitizers and the PAH benzo[<em>a</em>]pyrene (BaP) enhances ROS formation. We observed a synergistic effect of the skin sensitizers on the BaP-induced expression of the NRF2 target genes heme oxygenase-1, sulfiredoxin-1 and AKR1C3. In fact, co-exposure to the skin sensitizers also enhanced the BaP-induced formation of superoxide anions. Intriguingly, the co-exposure-related ROS formation was abolished upon inhibition of either CYP1A1 or AKR1C3. Testing of additional skin-sensitizing compounds, differing in their mode of action, indicated that especially potent Michael acceptors enhance the toxicity of BaP by increasing AKR1C3 expression and, presumably, downstream BaP-quinone formation. Our study reveals potential health risks associated with the simultaneous exposure to common skin-sensitizing substances and ubiquitous PAHs, and implies a role for NRF2 in mediating PAH toxicity.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"230 ","pages":"Pages 50-57"},"PeriodicalIF":7.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}