Sakiko Sugawara, Kana Ito, Shin-Ichi Miyazawa, Amane Makino, Yuji Suzuki
{"title":"Enzymatic and quantitative properties of Rubisco in some conifers and lycopods.","authors":"Sakiko Sugawara, Kana Ito, Shin-Ichi Miyazawa, Amane Makino, Yuji Suzuki","doi":"10.1007/s10265-024-01606-4","DOIUrl":null,"url":null,"abstract":"<p><p>Information on the kinetic properties of Rubisco, a key enzyme for photosynthesis, is scarce in land plants that emerged early during the evolutionary process. This study examined the carboxylase activity and abundance of Rubisco in five conifers, two lycopods, and three control C<sub>3</sub> crops. The turnover rates of Rubisco carboxylation (k<sub>cat</sub><sup>c</sup>) under saturated-CO<sub>2</sub> conditions in conifers and lycopods were comparable to those in the control C<sub>3</sub> crops. Rubisco carboxylase activity under CO<sub>2</sub>-unsaturated conditions (v<sub>cu</sub>) was also measured using reaction mixtures saturated with a N<sub>2</sub> gas containing CO<sub>2</sub> and O<sub>2</sub> at present atmospheric levels to predict the Rubisco CO<sub>2</sub> affinity from the percentage of v<sub>cu</sub> in k<sub>cat</sub><sup>c</sup>. The predicted CO<sub>2</sub> affinity in conifers and lycopods tended to be lower than that in the control C<sub>3</sub> crops. When the control C<sub>3</sub> crops and two previously examined C<sub>4</sub> crops were analyzed together, the k<sub>cat</sub><sup>c</sup> of Rubisco with a low CO<sub>2</sub> affinity tended to be high. N allocation to Rubisco with a low k<sub>cat</sub><sup>c</sup> tended to be high in these plants. In conifers and lycopods, the k<sub>cat</sub><sup>c</sup> was lower than that expected on the basis of predicted Rubisco CO<sub>2</sub> affinity, unlike in the control crops. N allocation to Rubisco also tended to be lower than that expected on the basis of k<sub>cat</sub><sup>c</sup>. These results indicate that Rubisco in the examined conifers and lycopods is not superior in terms of both k<sub>cat</sub><sup>c</sup> and CO<sub>2</sub> affinity and that the abundance of Rubisco is not necessarily closely related to its kinetic properties. The reason for these phenomena is discussed in terms of the molecular evolution of Rubisco.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01606-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Information on the kinetic properties of Rubisco, a key enzyme for photosynthesis, is scarce in land plants that emerged early during the evolutionary process. This study examined the carboxylase activity and abundance of Rubisco in five conifers, two lycopods, and three control C3 crops. The turnover rates of Rubisco carboxylation (kcatc) under saturated-CO2 conditions in conifers and lycopods were comparable to those in the control C3 crops. Rubisco carboxylase activity under CO2-unsaturated conditions (vcu) was also measured using reaction mixtures saturated with a N2 gas containing CO2 and O2 at present atmospheric levels to predict the Rubisco CO2 affinity from the percentage of vcu in kcatc. The predicted CO2 affinity in conifers and lycopods tended to be lower than that in the control C3 crops. When the control C3 crops and two previously examined C4 crops were analyzed together, the kcatc of Rubisco with a low CO2 affinity tended to be high. N allocation to Rubisco with a low kcatc tended to be high in these plants. In conifers and lycopods, the kcatc was lower than that expected on the basis of predicted Rubisco CO2 affinity, unlike in the control crops. N allocation to Rubisco also tended to be lower than that expected on the basis of kcatc. These results indicate that Rubisco in the examined conifers and lycopods is not superior in terms of both kcatc and CO2 affinity and that the abundance of Rubisco is not necessarily closely related to its kinetic properties. The reason for these phenomena is discussed in terms of the molecular evolution of Rubisco.
期刊介绍:
The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology.
The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.