Enzymatic and quantitative properties of Rubisco in some conifers and lycopods.

IF 2.7 3区 生物学 Q2 PLANT SCIENCES Journal of Plant Research Pub Date : 2024-12-14 DOI:10.1007/s10265-024-01606-4
Sakiko Sugawara, Kana Ito, Shin-Ichi Miyazawa, Amane Makino, Yuji Suzuki
{"title":"Enzymatic and quantitative properties of Rubisco in some conifers and lycopods.","authors":"Sakiko Sugawara, Kana Ito, Shin-Ichi Miyazawa, Amane Makino, Yuji Suzuki","doi":"10.1007/s10265-024-01606-4","DOIUrl":null,"url":null,"abstract":"<p><p>Information on the kinetic properties of Rubisco, a key enzyme for photosynthesis, is scarce in land plants that emerged early during the evolutionary process. This study examined the carboxylase activity and abundance of Rubisco in five conifers, two lycopods, and three control C<sub>3</sub> crops. The turnover rates of Rubisco carboxylation (k<sub>cat</sub><sup>c</sup>) under saturated-CO<sub>2</sub> conditions in conifers and lycopods were comparable to those in the control C<sub>3</sub> crops. Rubisco carboxylase activity under CO<sub>2</sub>-unsaturated conditions (v<sub>cu</sub>) was also measured using reaction mixtures saturated with a N<sub>2</sub> gas containing CO<sub>2</sub> and O<sub>2</sub> at present atmospheric levels to predict the Rubisco CO<sub>2</sub> affinity from the percentage of v<sub>cu</sub> in k<sub>cat</sub><sup>c</sup>. The predicted CO<sub>2</sub> affinity in conifers and lycopods tended to be lower than that in the control C<sub>3</sub> crops. When the control C<sub>3</sub> crops and two previously examined C<sub>4</sub> crops were analyzed together, the k<sub>cat</sub><sup>c</sup> of Rubisco with a low CO<sub>2</sub> affinity tended to be high. N allocation to Rubisco with a low k<sub>cat</sub><sup>c</sup> tended to be high in these plants. In conifers and lycopods, the k<sub>cat</sub><sup>c</sup> was lower than that expected on the basis of predicted Rubisco CO<sub>2</sub> affinity, unlike in the control crops. N allocation to Rubisco also tended to be lower than that expected on the basis of k<sub>cat</sub><sup>c</sup>. These results indicate that Rubisco in the examined conifers and lycopods is not superior in terms of both k<sub>cat</sub><sup>c</sup> and CO<sub>2</sub> affinity and that the abundance of Rubisco is not necessarily closely related to its kinetic properties. The reason for these phenomena is discussed in terms of the molecular evolution of Rubisco.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01606-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Information on the kinetic properties of Rubisco, a key enzyme for photosynthesis, is scarce in land plants that emerged early during the evolutionary process. This study examined the carboxylase activity and abundance of Rubisco in five conifers, two lycopods, and three control C3 crops. The turnover rates of Rubisco carboxylation (kcatc) under saturated-CO2 conditions in conifers and lycopods were comparable to those in the control C3 crops. Rubisco carboxylase activity under CO2-unsaturated conditions (vcu) was also measured using reaction mixtures saturated with a N2 gas containing CO2 and O2 at present atmospheric levels to predict the Rubisco CO2 affinity from the percentage of vcu in kcatc. The predicted CO2 affinity in conifers and lycopods tended to be lower than that in the control C3 crops. When the control C3 crops and two previously examined C4 crops were analyzed together, the kcatc of Rubisco with a low CO2 affinity tended to be high. N allocation to Rubisco with a low kcatc tended to be high in these plants. In conifers and lycopods, the kcatc was lower than that expected on the basis of predicted Rubisco CO2 affinity, unlike in the control crops. N allocation to Rubisco also tended to be lower than that expected on the basis of kcatc. These results indicate that Rubisco in the examined conifers and lycopods is not superior in terms of both kcatc and CO2 affinity and that the abundance of Rubisco is not necessarily closely related to its kinetic properties. The reason for these phenomena is discussed in terms of the molecular evolution of Rubisco.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
期刊最新文献
New Year's greetings 2025 from the Journal of Plant Research. Molecular characterization of a novel photoperiod-insensitive allele Ppd-B1a.3 and its effect on heading date in Chinese wheat (Triticum aestivum) cultivar Qingchun 37. Synergistic effect of alkane and membrane lipid alteration in Synechococcus elongatus PCC 7942 under salt and light stresses. Floral developmental insights into two species of Erythrina (Fabaceae: Papilionoideae: Phaseoleae) pollinated by hummingbirds and passerines. Chlorophyll fluorescence responses to CO2 availability reveal crassulacean acid metabolism in epiphytic orchids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1