Feasibility of Sub-milliSievert Low-dose Computed Tomography with Deep Learning Image Reconstruction in Evaluating Pulmonary Subsolid Nodules: A Prospective Intra-individual Comparison Study.

IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Academic Radiology Pub Date : 2024-12-13 DOI:10.1016/j.acra.2024.11.042
Huiyuan Zhu, Zike Huang, Qunhui Chen, Weiling Ma, Jiahui Yu, Shiqing Wang, Guangyu Tao, Jun Xing, Haixin Jiang, Xiwen Sun, Jing Liu, Hong Yu, Lin Zhu
{"title":"Feasibility of Sub-milliSievert Low-dose Computed Tomography with Deep Learning Image Reconstruction in Evaluating Pulmonary Subsolid Nodules: A Prospective Intra-individual Comparison Study.","authors":"Huiyuan Zhu, Zike Huang, Qunhui Chen, Weiling Ma, Jiahui Yu, Shiqing Wang, Guangyu Tao, Jun Xing, Haixin Jiang, Xiwen Sun, Jing Liu, Hong Yu, Lin Zhu","doi":"10.1016/j.acra.2024.11.042","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>To comprehensively assess the feasibility of low-dose computed tomography (LDCT) using deep learning image reconstruction (DLIR) for evaluating pulmonary subsolid nodules, which are challenging due to their susceptibility to noise.</p><p><strong>Materials and methods: </strong>Patients undergoing both standard-dose CT (SDCT) and LDCT between March and June 2023 were prospectively enrolled. LDCT images were reconstructed with high-strength DLIR (DLIR-H), medium-strength DLIR (DLIR-M), adaptive statistical iterative reconstruction-V level 50% (ASIR-V-50%), and filtered back projection (FBP); SDCT with FBP as the reference standard. Objective assessment, including image noise, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR), and subjective assessment using five-point scales by five radiologists were performed. Detection and false-positive rate of subsolid nodules, and morphologic features of nodules were recorded.</p><p><strong>Results: </strong>102 patients (mean age, 57.0 ± 12.3 years) with 358 subsolid nodules in SDCT were enrolled. The mean effective dose of SDCT and LDCT were 5.37 ± 0.80mSv and 0.86 ± 0.14mSv, respectively (P < 0.001). DLIR-H showed the lowest noise, highest CNRs, SNRs, and subjective scores among LDCT groups (all P < 0.001), almost approaching comparability with SDCT. The detection rates for DLIR-H, DLIR-M, ASIR-V-50%, and FBP were 76.5%, 76.3%, 83.8%, and 72.1%, respectively (P < 0.001), with false-positive rate of 2.5%, 2.2%, 8.3%, and 1.1%, respectively (P < 0.001). DLIR-H showed the highest detection rates for morphologic features (79.4%-95.2%) compared to DLIR-M (74.6%-88.9%), ASIR-V-50% (72.0%-88.4%), and FBP (66.1%-84.1%) (all P ≤ 0.001).</p><p><strong>Conclusion: </strong>Sub-milliSievert LDCT with DLIR-H offers substantial dose reduction without compromising image quality. It is promising for evaluating subsolid nodules with a high detection rate and better identification of morphologic features.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.11.042","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale and objectives: To comprehensively assess the feasibility of low-dose computed tomography (LDCT) using deep learning image reconstruction (DLIR) for evaluating pulmonary subsolid nodules, which are challenging due to their susceptibility to noise.

Materials and methods: Patients undergoing both standard-dose CT (SDCT) and LDCT between March and June 2023 were prospectively enrolled. LDCT images were reconstructed with high-strength DLIR (DLIR-H), medium-strength DLIR (DLIR-M), adaptive statistical iterative reconstruction-V level 50% (ASIR-V-50%), and filtered back projection (FBP); SDCT with FBP as the reference standard. Objective assessment, including image noise, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR), and subjective assessment using five-point scales by five radiologists were performed. Detection and false-positive rate of subsolid nodules, and morphologic features of nodules were recorded.

Results: 102 patients (mean age, 57.0 ± 12.3 years) with 358 subsolid nodules in SDCT were enrolled. The mean effective dose of SDCT and LDCT were 5.37 ± 0.80mSv and 0.86 ± 0.14mSv, respectively (P < 0.001). DLIR-H showed the lowest noise, highest CNRs, SNRs, and subjective scores among LDCT groups (all P < 0.001), almost approaching comparability with SDCT. The detection rates for DLIR-H, DLIR-M, ASIR-V-50%, and FBP were 76.5%, 76.3%, 83.8%, and 72.1%, respectively (P < 0.001), with false-positive rate of 2.5%, 2.2%, 8.3%, and 1.1%, respectively (P < 0.001). DLIR-H showed the highest detection rates for morphologic features (79.4%-95.2%) compared to DLIR-M (74.6%-88.9%), ASIR-V-50% (72.0%-88.4%), and FBP (66.1%-84.1%) (all P ≤ 0.001).

Conclusion: Sub-milliSievert LDCT with DLIR-H offers substantial dose reduction without compromising image quality. It is promising for evaluating subsolid nodules with a high detection rate and better identification of morphologic features.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚毫西弗低剂量计算机断层扫描与深度学习图像重建在评估肺部实性下结节中的可行性:一项前瞻性个体内比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
期刊最新文献
Diagnostic Characteristics and Clinical Relevance of Incidental Hypermetabolic Breast Lesions Detected on 18F-FDG PET-CT: A Retrospective Evaluation. Diagnostic Efficacy of Ventilation-Perfusion Single Photo Emission Computed Tomography/Computed Tomography for Pulmonary Hypertension due to Fibrinous Mediastinitis. Predicting Intracerebral Hemorrhage Outcomes Using Deep Learning Models to Extract Head CT Imaging Features. The quality and accuracy of radiomics model in diagnosing osteoporosis: a systematic review and meta-analysis. ARPA-H for Radiologists: Novel Funding Opportunities and Results of a National Survey.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1