Biochar promotes the dissolution of inorganic inactive phosphorus by mediating the bacterial community during corn stover and cattle manure composting.

Linqin Zhao, Ying Li, Bowen Fan, Mengmeng Wang, Ning Sun, Fengjun Yang
{"title":"Biochar promotes the dissolution of inorganic inactive phosphorus by mediating the bacterial community during corn stover and cattle manure composting.","authors":"Linqin Zhao, Ying Li, Bowen Fan, Mengmeng Wang, Ning Sun, Fengjun Yang","doi":"10.1016/j.chemosphere.2024.143946","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorus (P) is a macroelement primarily found in insoluble forms in nature. Enhancing the effectiveness of P is crucial for sustainable agricultural development and ecosystems. The research employed a combination of sequential extraction methods, high-throughput sequencing techniques, microbial culturing, and ecological network analysis of bacterial communities, along with module comparison, to explore the dynamics of different P fractions in calcareous soils. The objective of incorporating biochar into the composting of maize stover and cattle dung was to uncover potential microbial processes that could facilitate the activation of inorganic non-labile P. Findings revealed that during the composting process with biochar, bacterial populations played three distinct roles in the transformation of inorganic non-labile P compounds (such as occluded P and Ca<sub>10</sub>-P). Primarily, the introduction of biochar significantly increased both the diversity and abundance of bacterial communities. Additionally, it enhanced the ability of phosphate-solubilizing bacteria to maintain the structure of bacterial ecological networks by boosting their complexity, interconnectedness, and stability. Moreover, the incorporation of biochar stimulated the P-related metabolic activities within the bacterial community, significantly enriching key metabolic pathways such as the citrate (TCA) cycle, glycolysis/gluconeogenesis, the pentose phosphate pathway, galactose metabolism, starch, and sucrose metabolism, as well as the metabolism of amino and nucleotide sugars. Moreover, biochar addition intensified the connections between key operational taxonomic units (OTUs) and non-labile P while simultaneously increasing the total organic carbon concentration and enhancing alkaline phosphatase activity. This study provides valuable insights for enhancing P effectiveness in calcareous soils.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143946"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorus (P) is a macroelement primarily found in insoluble forms in nature. Enhancing the effectiveness of P is crucial for sustainable agricultural development and ecosystems. The research employed a combination of sequential extraction methods, high-throughput sequencing techniques, microbial culturing, and ecological network analysis of bacterial communities, along with module comparison, to explore the dynamics of different P fractions in calcareous soils. The objective of incorporating biochar into the composting of maize stover and cattle dung was to uncover potential microbial processes that could facilitate the activation of inorganic non-labile P. Findings revealed that during the composting process with biochar, bacterial populations played three distinct roles in the transformation of inorganic non-labile P compounds (such as occluded P and Ca10-P). Primarily, the introduction of biochar significantly increased both the diversity and abundance of bacterial communities. Additionally, it enhanced the ability of phosphate-solubilizing bacteria to maintain the structure of bacterial ecological networks by boosting their complexity, interconnectedness, and stability. Moreover, the incorporation of biochar stimulated the P-related metabolic activities within the bacterial community, significantly enriching key metabolic pathways such as the citrate (TCA) cycle, glycolysis/gluconeogenesis, the pentose phosphate pathway, galactose metabolism, starch, and sucrose metabolism, as well as the metabolism of amino and nucleotide sugars. Moreover, biochar addition intensified the connections between key operational taxonomic units (OTUs) and non-labile P while simultaneously increasing the total organic carbon concentration and enhancing alkaline phosphatase activity. This study provides valuable insights for enhancing P effectiveness in calcareous soils.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在玉米秸秆和牛粪堆肥过程中,生物炭通过调解细菌群落促进无机非活性磷的溶解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of iron-modified biochar on phosphate transport and deposition in saturated porous media under varying pH, ionic strength, and biochar dosage. Evidences of the electrogenic sulfur oxidation in constructed wetlands. Bisphenol A induces sex-dependent alterations in the neuroendocrine response of Djungarian hamsters to photoperiod. Encapsulation of fluorescent carbon dots into mesoporous SiO2 colloidal spheres by surface functionalization-assisted cooperative assembly for high-contrast latent fingerprint development. A biomarkers study of human skin fibroblasts exposition to glyphosate-based herbicide using an untargeted and targeted metabolomics approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1