Optimizing s‐p Orbital Overlap between Sodium Polysulfides and Single‐Atom Indium Catalyst for Efficient Sulfur Redox Reaction

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-12-16 DOI:10.1002/anie.202422208
Guangxuan Wu, Tongfeng Liu, Zhoujie Lao, Yihao Cheng, Tianshuai Wang, Jing Mao, Haichang Zhang, Enzuo Liu, Chunsheng Shi, Guangmin Zhou, Chunnian He, Wenbin Hu, Naiqin Zhao, Ningning Wu, Biao Chen
{"title":"Optimizing s‐p Orbital Overlap between Sodium Polysulfides and Single‐Atom Indium Catalyst for Efficient Sulfur Redox Reaction","authors":"Guangxuan Wu, Tongfeng Liu, Zhoujie Lao, Yihao Cheng, Tianshuai Wang, Jing Mao, Haichang Zhang, Enzuo Liu, Chunsheng Shi, Guangmin Zhou, Chunnian He, Wenbin Hu, Naiqin Zhao, Ningning Wu, Biao Chen","doi":"10.1002/anie.202422208","DOIUrl":null,"url":null,"abstract":"P‐block metal carbon‐supported single‐atom catalysts (C‐SACs) have emerged as a promising candidate for high‐performance room‐temperature sodium‐sulfur (RT Na‐S) batteries, due to their high atom utilization and unique electronic structure. However, the ambiguous electronic‐level understanding of Na‐dominant s‐p hybridization between sodium polysulfides (NaPSs) and p‐block C‐SACs limits the precise control of coordination environment tuning and electro‐catalytic activity manipulation. Here, s‐p orbital overlap degree (OOD) between the s orbitals of Na in NaPSs and the p orbitals of p‐block C‐SACs is proposed as a descriptor for sulfur reduction reaction (SRR) and sulfur oxidation reaction (SOR). Compared to NG and NG‐supported InN4 (NG‐InN4) SACs, the nitrogen‐doped graphene‐supported InN5 (NG‐InN5) SACs show the largest s‐p OOD, demonstrating the weakest shuttle effect and the lowest reaction energy barriers in both SRR and SOR. Accordingly, the designed catalysts allow the Na‐S pouch batteries to retain a high capacity of 490.7 mAh g‐1 at 2 A g‐1 with a Coulombic efficiency of 96% at a low electrolyte/sulfur (E/S) ratio of 4.5 μl. This work offers an s‐p orbital overlap descriptor describing the interaction between NaPSs and p‐orbital‐dominated catalysts for high‐performance RT Na‐S batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"23 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422208","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

P‐block metal carbon‐supported single‐atom catalysts (C‐SACs) have emerged as a promising candidate for high‐performance room‐temperature sodium‐sulfur (RT Na‐S) batteries, due to their high atom utilization and unique electronic structure. However, the ambiguous electronic‐level understanding of Na‐dominant s‐p hybridization between sodium polysulfides (NaPSs) and p‐block C‐SACs limits the precise control of coordination environment tuning and electro‐catalytic activity manipulation. Here, s‐p orbital overlap degree (OOD) between the s orbitals of Na in NaPSs and the p orbitals of p‐block C‐SACs is proposed as a descriptor for sulfur reduction reaction (SRR) and sulfur oxidation reaction (SOR). Compared to NG and NG‐supported InN4 (NG‐InN4) SACs, the nitrogen‐doped graphene‐supported InN5 (NG‐InN5) SACs show the largest s‐p OOD, demonstrating the weakest shuttle effect and the lowest reaction energy barriers in both SRR and SOR. Accordingly, the designed catalysts allow the Na‐S pouch batteries to retain a high capacity of 490.7 mAh g‐1 at 2 A g‐1 with a Coulombic efficiency of 96% at a low electrolyte/sulfur (E/S) ratio of 4.5 μl. This work offers an s‐p orbital overlap descriptor describing the interaction between NaPSs and p‐orbital‐dominated catalysts for high‐performance RT Na‐S batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化多硫化钠与单原子铟催化剂之间的 s-p 轨道重叠,实现高效的硫氧化还原反应
P 嵌段金属碳支撑单原子催化剂(C-SAC)因其高原子利用率和独特的电子结构,已成为高性能室温钠硫(RT Na-S)电池的理想候选材料。然而,由于对多硫化钠(NaPSs)和对嵌段 C-SACs 之间以 Na 为主导的 s-p 杂化在电子层面上的认识不明确,限制了对配位环境调整和电催化活性操作的精确控制。在此,我们提出将 NaPSs 中 Na 的 s 轨道与 p 块 C-SACs 的 p 轨道之间的 s-p 轨道重叠度(OOD)作为硫还原反应(SRR)和硫氧化反应(SOR)的描述因子。与 NG 和 NG 支持的 InN4(NG-InN4)SAC 相比,掺氮石墨烯支持的 InN5(NG-InN5)SAC 显示出最大的 s-p OOD,在 SRR 和 SOR 反应中显示出最弱的穿梭效应和最低的反应能垒。因此,在电解质/硫(E/S)比为 4.5 μl 的低条件下,所设计的催化剂可使 Na-S 袋装电池在 2 A g-1 电流条件下保持 490.7 mAh g-1 的高容量,库仑效率达到 96%。这项研究为高性能 RT Na-S 电池提供了一种 s-p 轨道重叠描述符,用于描述 NaPS 与 p 轨道为主的催化剂之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Lucas Foppa Fluorination from Surface to Bulk Stabilizing High Nickel Cathode Materials with Outstanding Electrochemical Performance Benzyl Ammonium Carbamates Undergo Two-Step Linker Cleavage and Improve the Properties of Antibody Conjugates Angewandte Chemie: One Journal, Many Faces Jordan Hobbs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1