Reply to: Limitations in odour recognition and generalization in a neuromorphic olfactory circuit

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Nature Machine Intelligence Pub Date : 2024-12-16 DOI:10.1038/s42256-024-00951-2
Roy Moyal, Nabil Imam, Thomas A. Cleland
{"title":"Reply to: Limitations in odour recognition and generalization in a neuromorphic olfactory circuit","authors":"Roy Moyal, Nabil Imam, Thomas A. Cleland","doi":"10.1038/s42256-024-00951-2","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 12","pages":"1454-1456"},"PeriodicalIF":18.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00951-2","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回复:气味识别的局限性和神经形态嗅觉回路的泛化
回复N. Dennler等人。自然机器智能https://doi.org/10.1038/s42256-024-00952-1(2024)在他们的评论中,Dennler等人1提交他们已经发现了影响我们2020年论文中得出的一些结论的局限性,“神经形态嗅觉回路中的快速在线学习和强大回忆”2。具体来说,他们断言(1)我们使用的公共数据集受到传感器漂移和非随机测量协议的影响,(2)我们的神经形态外部丛状层(EPL)网络在气味重复呈现的泛化能力方面受到限制,(3)我们的EPL网络结果可以通过使用计算效率更高的距离度量来匹配性能。尽管他们对公共数据局限性的描述是正确的,但在他们的前两个断言中,他们没有承认我们对这些数据的利用是如何避开这些局限性的。他们的第三个主张源于产生距离测量方法的缺陷。我们在下面依次回应这三种说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
期刊最新文献
A unified cross-attention model for predicting antigen binding specificity to both HLA and TCR molecules Deep learning enhances the prediction of HLA class I-presented CD8+ T cell epitopes in foreign pathogens Machine learning solutions looking for PDE problems Evolutionary optimization of model merging recipes Moving towards genome-wide data integration for patient stratification with Integrate Any Omics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1