{"title":"Removal efficiency for size-sorted particles of lunar regolith simulant using an electrodynamic dust shield","authors":"Masato Adachi, Ryudai Nitano","doi":"10.1016/j.actaastro.2024.12.026","DOIUrl":null,"url":null,"abstract":"Mitigation of lunar regolith particles is one of the challenges for the success of future lunar exploration, and an electrodynamic dust shield (EDS) presents a promising solution. Although a wide range of investigations have been conducted on the cleaning of lunar regolith and its simulants using EDS, the effects of particle size on cleaning performance have not been experimentally investigated in depth. In this study, we conducted EDS cleaning experiments using simulant particles sorted into different size ranges, with the aid of force balance calculations that vary with particle size. The experimental and calculated results reveal a clear trend: the cleaning performance of simulant particles smaller than 25 μm and larger than 250 μm deteriorated owing to the adhesion force of small particles and the dielectrophoresis and gravitational forces of large particles, respectively. In addition, observations of particle motion using a high-speed camera confirmed the role of dielectrophoresis and Coulomb forces on regolith simulants of various sizes during cleaning. In the effects of the dielectrophoresis force on larger particles, the interactions of polarized particles were clearly visible, resulting in the creation of particle chains and the trapping of particles on the substrate surface of EDS.","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"6 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.actaastro.2024.12.026","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Mitigation of lunar regolith particles is one of the challenges for the success of future lunar exploration, and an electrodynamic dust shield (EDS) presents a promising solution. Although a wide range of investigations have been conducted on the cleaning of lunar regolith and its simulants using EDS, the effects of particle size on cleaning performance have not been experimentally investigated in depth. In this study, we conducted EDS cleaning experiments using simulant particles sorted into different size ranges, with the aid of force balance calculations that vary with particle size. The experimental and calculated results reveal a clear trend: the cleaning performance of simulant particles smaller than 25 μm and larger than 250 μm deteriorated owing to the adhesion force of small particles and the dielectrophoresis and gravitational forces of large particles, respectively. In addition, observations of particle motion using a high-speed camera confirmed the role of dielectrophoresis and Coulomb forces on regolith simulants of various sizes during cleaning. In the effects of the dielectrophoresis force on larger particles, the interactions of polarized particles were clearly visible, resulting in the creation of particle chains and the trapping of particles on the substrate surface of EDS.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.