{"title":"STC-GraphFormer: Graph spatial-temporal correlation transformer for in-vehicle network intrusion detection system","authors":"Gaber A. Al-Absi, Yong Fang, Adnan A. Qaseem","doi":"10.1016/j.vehcom.2024.100865","DOIUrl":null,"url":null,"abstract":"The integration of several developing technologies and their applications with Internet of Vehicles (IoVs) techniques has been improved. Utilizing these emerging technologies renders the in-vehicle network more susceptible to intrusions. Furthermore, the utilization of Electronic Control Units (ECUs) in current vehicles has experienced a significant increase, establishing the Controller Area Network (CAN) as the widely used standard in the automotive field. The CAN protocol provides an efficient and broadcast-based protocol for facilitating serial data exchange between ECUs. However, it lacks provisions for security measures such as authentication and encryption. The attackers have exploited these weaknesses to launch various attacks on CAN-based IVN. This paper proposes STC-GraphFormer, an innovative spatial-temporal model that utilizes a Graph Convolutional Network (GCN) and a transformer. The spatial GCN layers are utilized to construct and acquire local spatial features, while the temporal transformer layers are employed to capture the long-term global temporal dependencies. By employing this integrated approach, STC-GraphFormer can learn complex spatial-temporal correlations within the IVN data, enabling it to detect and classify malicious intrusions. The proposed STC-GraphFormer has been validated using five real in-vehicle CAN datasets that cover a wide range of attacks that have not been previously investigated together. The finding results indicate that the STC-GraphFormer is more efficient than the SOTA approaches. It demonstrates excellent performance, with Car-hacking (0.99983), IVN intrusion detection (0.9991), CAN Dataset for intrusion detection “OTIDS” (0.9992), CAR hacking: attack & defense challenge (0.9901), and Survival analysis (0.9982), with a minimal false alarm rate and the highest achievable F1 scores for various types of attacks.","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"30 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.vehcom.2024.100865","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of several developing technologies and their applications with Internet of Vehicles (IoVs) techniques has been improved. Utilizing these emerging technologies renders the in-vehicle network more susceptible to intrusions. Furthermore, the utilization of Electronic Control Units (ECUs) in current vehicles has experienced a significant increase, establishing the Controller Area Network (CAN) as the widely used standard in the automotive field. The CAN protocol provides an efficient and broadcast-based protocol for facilitating serial data exchange between ECUs. However, it lacks provisions for security measures such as authentication and encryption. The attackers have exploited these weaknesses to launch various attacks on CAN-based IVN. This paper proposes STC-GraphFormer, an innovative spatial-temporal model that utilizes a Graph Convolutional Network (GCN) and a transformer. The spatial GCN layers are utilized to construct and acquire local spatial features, while the temporal transformer layers are employed to capture the long-term global temporal dependencies. By employing this integrated approach, STC-GraphFormer can learn complex spatial-temporal correlations within the IVN data, enabling it to detect and classify malicious intrusions. The proposed STC-GraphFormer has been validated using five real in-vehicle CAN datasets that cover a wide range of attacks that have not been previously investigated together. The finding results indicate that the STC-GraphFormer is more efficient than the SOTA approaches. It demonstrates excellent performance, with Car-hacking (0.99983), IVN intrusion detection (0.9991), CAN Dataset for intrusion detection “OTIDS” (0.9992), CAR hacking: attack & defense challenge (0.9901), and Survival analysis (0.9982), with a minimal false alarm rate and the highest achievable F1 scores for various types of attacks.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.