Widhi Yahya, Ying-Dar Lin, Faysal Marzuk, Piotr Chołda, Yuan-Cheng Lai
{"title":"Offloading in V2X with road side units: Deep reinforcement learning","authors":"Widhi Yahya, Ying-Dar Lin, Faysal Marzuk, Piotr Chołda, Yuan-Cheng Lai","doi":"10.1016/j.vehcom.2024.100862","DOIUrl":null,"url":null,"abstract":"Traffic offloading is crucial for reducing computing latency in distributed edge systems such as vehicle-to-everything (V2X) networks, which use roadside units (RSUs) and access network mobile edge computing (AN-MEC) with ML agents. Traffic offloading is part of the control plane problem, which requires fast decision-making in complex V2X systems. This study presents a novel ratio-based offloading strategy using the twin delayed deep deterministic policy gradient (TD3) algorithm to optimize offloading ratios in a two-tier V2X system, enabling computation at both RSUs and the edge. The offloading optimization covers both vertical and horizontal offloading, introducing a continuous search space that needs fast decision-making to accommodate fluctuating traffic in complex V2X systems. We developed a V2X environment to evaluate the performance of the offloading agent, incorporating latency models, state and action definitions, and reward structures. A comparative analysis with metaheuristic simulated annealing (SA) is conducted, and the impact of single versus multiple offloading agents with deployment options at a centralized central office (CO) is examined. Evaluation results indicate that TD3's decision time is five orders of magnitude faster than SA. For 10 and 50 sites, SA takes 602 and 20,421 seconds, respectively, while single-agent TD3 requires 4 to 24 milliseconds and multi-agent TD3 takes 1 to 3 milliseconds. The average latency for SA ranges from 0.18 to 0.32 milliseconds, single-agent TD3 from 0.26 to 0.5 milliseconds, and multi-agent TD3 from 0.22 to 0.45 milliseconds, demonstrating that TD3 approximates SA performance with initial training.","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"29 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.vehcom.2024.100862","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic offloading is crucial for reducing computing latency in distributed edge systems such as vehicle-to-everything (V2X) networks, which use roadside units (RSUs) and access network mobile edge computing (AN-MEC) with ML agents. Traffic offloading is part of the control plane problem, which requires fast decision-making in complex V2X systems. This study presents a novel ratio-based offloading strategy using the twin delayed deep deterministic policy gradient (TD3) algorithm to optimize offloading ratios in a two-tier V2X system, enabling computation at both RSUs and the edge. The offloading optimization covers both vertical and horizontal offloading, introducing a continuous search space that needs fast decision-making to accommodate fluctuating traffic in complex V2X systems. We developed a V2X environment to evaluate the performance of the offloading agent, incorporating latency models, state and action definitions, and reward structures. A comparative analysis with metaheuristic simulated annealing (SA) is conducted, and the impact of single versus multiple offloading agents with deployment options at a centralized central office (CO) is examined. Evaluation results indicate that TD3's decision time is five orders of magnitude faster than SA. For 10 and 50 sites, SA takes 602 and 20,421 seconds, respectively, while single-agent TD3 requires 4 to 24 milliseconds and multi-agent TD3 takes 1 to 3 milliseconds. The average latency for SA ranges from 0.18 to 0.32 milliseconds, single-agent TD3 from 0.26 to 0.5 milliseconds, and multi-agent TD3 from 0.22 to 0.45 milliseconds, demonstrating that TD3 approximates SA performance with initial training.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.