Interaction of shallow and deep groundwater with a tropical ocean: Insights from radiogenic (87Sr/86Sr) and stable isotope cycling and fluxes

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL Journal of Hydrology Pub Date : 2024-12-09 DOI:10.1016/j.jhydrol.2024.132479
Kousik Das, Sourav Ganguly, Prakrity Majumder, Ramananda Chakrabarti, Abhijit Mukherjee
{"title":"Interaction of shallow and deep groundwater with a tropical ocean: Insights from radiogenic (87Sr/86Sr) and stable isotope cycling and fluxes","authors":"Kousik Das, Sourav Ganguly, Prakrity Majumder, Ramananda Chakrabarti, Abhijit Mukherjee","doi":"10.1016/j.jhydrol.2024.132479","DOIUrl":null,"url":null,"abstract":"Coastal groundwater is susceptible to physico-chemical modification from interaction with seawater and other surface waters. Surface water-groundwater (SW-GW) interaction can alter the Sr concentration and radiogenic <ce:sup loc=\"post\">87</ce:sup>Sr/<ce:sup loc=\"post\">86</ce:sup>Sr signature of both seawater and groundwater from multi-depth aquifers. In this study, we document such an interaction between a tropical ocean (Bay of Bengal [BoB]) and the coastal aquifers of a large mega-deltaic system formed by the Himalayan-sourced Ganges River, at shallow (10–50 m below ground level [bgl]), and deeper (115 and 333 m bgl) depths, using radiogenic strontium isotopes (<ce:sup loc=\"post\">87</ce:sup>Sr/<ce:sup loc=\"post\">86</ce:sup>Sr), stable isotope ratios (δ<ce:sup loc=\"post\">18</ce:sup>O and δD), salinity and dissolved solutes. The mean <ce:sup loc=\"post\">87</ce:sup>Sr/<ce:sup loc=\"post\">86</ce:sup>Sr for shallow coastal aquifers (10–50 m bgl: 0.71094) suggests that seawater mixes with the terrestrial-sourced shallow groundwater, modifying them to brackish water. This is further supported by the stable isotope signatures (14–25 m bgl: −3.63 to −0.7 ‰ and 30–50 m bgl: −3.5 to −1.2 ‰ δ<ce:sup loc=\"post\">18</ce:sup>O). The radiogenic <ce:sup loc=\"post\">87</ce:sup>Sr/<ce:sup loc=\"post\">86</ce:sup>Sr (115 m bgl: 0.71681 and 333 m bgl: 0.71995) and depleted δ<ce:sup loc=\"post\">18</ce:sup>O (115 m bgl: −5.04 to −1.61 ‰ and 333 m bgl: −4.43 to −2.38 ‰) suggest relatively less to negligible mixing between seawater and terrestrial-sourced resident groundwater at greater depths. The mixing process is additionally characterized by a significant Sr flux discharged from these coastal aquifers to the BoB, which ranges between 7.7 × 10<ce:sup loc=\"post\">4</ce:sup> and 12 × 10<ce:sup loc=\"post\">5</ce:sup> mol/year for shallow aquifers, and between 1.78 × 10<ce:sup loc=\"post\">4</ce:sup> and 8.26 × 10<ce:sup loc=\"post\">4</ce:sup> mol/year for deep aquifers, respectively. The overall contribution of Sr from old groundwater of deep aquifers is 1.43 % (115 m bgl) and 0.66 % (333 m bgl), whereas shallow aquifers show a higher contribution, ranging from 6.18 to 9.57 % of BoB Sr budget. This study suggests that the discharge of recirculated brackish water to the BoB from the shallow aquifers contributes more than 5 times higher Sr to the oceanic budget than the deep aquifer, contributing as an essential component of the global oceanic budget of Sr.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"21 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132479","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Coastal groundwater is susceptible to physico-chemical modification from interaction with seawater and other surface waters. Surface water-groundwater (SW-GW) interaction can alter the Sr concentration and radiogenic 87Sr/86Sr signature of both seawater and groundwater from multi-depth aquifers. In this study, we document such an interaction between a tropical ocean (Bay of Bengal [BoB]) and the coastal aquifers of a large mega-deltaic system formed by the Himalayan-sourced Ganges River, at shallow (10–50 m below ground level [bgl]), and deeper (115 and 333 m bgl) depths, using radiogenic strontium isotopes (87Sr/86Sr), stable isotope ratios (δ18O and δD), salinity and dissolved solutes. The mean 87Sr/86Sr for shallow coastal aquifers (10–50 m bgl: 0.71094) suggests that seawater mixes with the terrestrial-sourced shallow groundwater, modifying them to brackish water. This is further supported by the stable isotope signatures (14–25 m bgl: −3.63 to −0.7 ‰ and 30–50 m bgl: −3.5 to −1.2 ‰ δ18O). The radiogenic 87Sr/86Sr (115 m bgl: 0.71681 and 333 m bgl: 0.71995) and depleted δ18O (115 m bgl: −5.04 to −1.61 ‰ and 333 m bgl: −4.43 to −2.38 ‰) suggest relatively less to negligible mixing between seawater and terrestrial-sourced resident groundwater at greater depths. The mixing process is additionally characterized by a significant Sr flux discharged from these coastal aquifers to the BoB, which ranges between 7.7 × 104 and 12 × 105 mol/year for shallow aquifers, and between 1.78 × 104 and 8.26 × 104 mol/year for deep aquifers, respectively. The overall contribution of Sr from old groundwater of deep aquifers is 1.43 % (115 m bgl) and 0.66 % (333 m bgl), whereas shallow aquifers show a higher contribution, ranging from 6.18 to 9.57 % of BoB Sr budget. This study suggests that the discharge of recirculated brackish water to the BoB from the shallow aquifers contributes more than 5 times higher Sr to the oceanic budget than the deep aquifer, contributing as an essential component of the global oceanic budget of Sr.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浅层和深层地下水与热带海洋的相互作用:从放射性(87Sr/86Sr)和稳定同位素循环与通量中获得的启示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
期刊最新文献
Cumulative impact of human activities on hydro-sediment dynamics and morphodynamics in the highly altered Yangtze Estuary Contaminant transport through the heterogeneous GCL/SL composite liner: Experimental and analytical studies A coupled hydrological multimedia model used to simulate PFASs transport and fate in the river network of megacity Shanghai Hydrogeochemical analysis and paleo-hydrogeological modeling of shallow groundwater salinization processes in North China Plain A new framework to assess and optimize urban flood resilience with green-grey-blue system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1