Eliminate voltage decay of LiCoO2 at 4.6 V through a combined bulk and surface reconfiguration

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2025-02-01 DOI:10.1016/j.electacta.2024.145540
Xu Xue , Yaru Zhao , Zhi Wang , Yufei Zhang , Chenchen Li
{"title":"Eliminate voltage decay of LiCoO2 at 4.6 V through a combined bulk and surface reconfiguration","authors":"Xu Xue ,&nbsp;Yaru Zhao ,&nbsp;Zhi Wang ,&nbsp;Yufei Zhang ,&nbsp;Chenchen Li","doi":"10.1016/j.electacta.2024.145540","DOIUrl":null,"url":null,"abstract":"<div><div>LiCoO<sub>2</sub> is an imperative cathode material for lithium-ion batteries due to its high discharge voltage and volumetric energy density. However, the practical application of LiCoO<sub>2</sub> at high voltage is greatly limited by the detrimental phase transition and interfacial side reactions. Herein, a combined bulk and surface reconfiguration via <em>K</em><sup>+</sup>–Mg<sup>2+</sup>–Al<sup>3+</sup>–Ti<sup>4+</sup> multi-ion doping and AlPO<sub>4</sub> coating is proposed to design high-voltage LiCoO<sub>2</sub> single crystals. This strategy can significantly change the morphology and microstructure of LiCoO<sub>2</sub>, resulting in obviously increased Li<sup>+</sup> diffusion kinetics and improved structural stability when charged to 4.6 V. In addition, the AlPO<sub>4</sub> coating layer can mitigate the cathode/electrolyte side reactions and contribute to form a robust Li<sub>3</sub>PO<sub>4</sub>- and LiF-rich cathode/electrolyte interphase during long-term cycling. As a result, voltage decay, particle cracks and the detrimental phase transition up to 4.6 V are effectively inhibited. The modified LiCoO<sub>2</sub> delivers a high discharge capacity of 136 mAh g<sup>–1</sup> at 10 C with outstanding capacity retention of 85.4 % and negligible voltage decay after 1000 cycles. This work can be enlightening for designing stable high-voltage cathode materials for lithium-ion batteries with long lifespan.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"512 ","pages":"Article 145540"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624017766","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

LiCoO2 is an imperative cathode material for lithium-ion batteries due to its high discharge voltage and volumetric energy density. However, the practical application of LiCoO2 at high voltage is greatly limited by the detrimental phase transition and interfacial side reactions. Herein, a combined bulk and surface reconfiguration via K+–Mg2+–Al3+–Ti4+ multi-ion doping and AlPO4 coating is proposed to design high-voltage LiCoO2 single crystals. This strategy can significantly change the morphology and microstructure of LiCoO2, resulting in obviously increased Li+ diffusion kinetics and improved structural stability when charged to 4.6 V. In addition, the AlPO4 coating layer can mitigate the cathode/electrolyte side reactions and contribute to form a robust Li3PO4- and LiF-rich cathode/electrolyte interphase during long-term cycling. As a result, voltage decay, particle cracks and the detrimental phase transition up to 4.6 V are effectively inhibited. The modified LiCoO2 delivers a high discharge capacity of 136 mAh g–1 at 10 C with outstanding capacity retention of 85.4 % and negligible voltage decay after 1000 cycles. This work can be enlightening for designing stable high-voltage cathode materials for lithium-ion batteries with long lifespan.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过结合块体和表面重新配置,消除钴酸锂在 4.6 V 电压下的电压衰减
钴酸锂具有较高的放电电压和体积能量密度,是锂离子电池必不可少的正极材料。然而,由于有害的相变和界面副反应,钴酸锂在高电压下的实际应用受到很大限制。本文提出了一种通过 K+-Mg2+-Al3+-Ti4+ 多离子掺杂和 AlPO4 镀膜进行体质和表面组合重构的方法来设计高压钴酸锂单晶。此外,AlPO4 涂层还能缓解阴极/电解质副反应,有助于在长期循环过程中形成稳健的富含 LiF 和 Li3PO4 的阴极/电解质相。因此,电压衰减、微粒裂纹和高达 4.6 V 的有害相变都得到了有效抑制。改性后的钴酸锂在 10 C 时放电容量高达 136 mAh g-1,容量保持率高达 85.4%,1000 次循环后的电压衰减可忽略不计。这项研究对设计稳定、高电压、长寿命的锂离子电池正极材料具有启发意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Topical review on metal oxides for transparent flexible thin film supercapacitors DFT-Guided Rational Design of a UiO-66-NH2/MFC Composite Separator with Hierarchical Pores for Modulating Interfacial Lithium-ion Transport Layered transition metal dichalcogenides in photovoltaics: Structure–interface correlation and device simulation insights Electrochemical performance of microwave assisted Cu2SnS3 electrode material in different electrolytes Molecular-level interface engineering via 3-mercaptopropionic acid for dendrite-free and long-life aqueous zinc-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1