Ferroelectric-Assisted Ion Dynamics for Prolonged Tactile Cognizance in a Biomimetic Memory-in-Sensor System

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-12-15 DOI:10.1002/aelm.202400550
Ritamay Bhunia, Joo Sung Kim, Hayoung Oh, Dong Jun Kim, Seokyeong Lee, Cheolmin Park, Do Hwan Kim
{"title":"Ferroelectric-Assisted Ion Dynamics for Prolonged Tactile Cognizance in a Biomimetic Memory-in-Sensor System","authors":"Ritamay Bhunia, Joo Sung Kim, Hayoung Oh, Dong Jun Kim, Seokyeong Lee, Cheolmin Park, Do Hwan Kim","doi":"10.1002/aelm.202400550","DOIUrl":null,"url":null,"abstract":"The advancements in developing low-powered artificial tactile cognition devices, inspired by the iontronic-reliant human haptic sensory system, show great potential in future robotics and prosthetics. However, poor tactile memory and the complexity of integrating diverse modules for tactile sensing and neuromorphic functionalities pose a formidable challenge. Here, a mechanoreceptor-inspired tactile memory-in-sensor (TMIS) device is presented, employing ferroelectric-assisted ion dynamics (FAID) in FAID-based synaptic tactile transistor (FAID-STT). This approach improves the long-term memory (LTM) of tactile information while minimizing power consumption, all within a unified device architecture of TMIS. The FAID mechanism intricately combines the release of trapped ions solely under mechanical stress with remnant ferroelectric polarization induced by voltage stimulation, ensuring prolonged memory retention. Consequently, the FAID-STT exhibits a voltage-dependent memory effect stemming from the augmentation of ferroelectric dipole polarization, offering uninterrupted tactile memory for over 12 min without requiring additional power inputs for memory retention.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"47 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400550","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The advancements in developing low-powered artificial tactile cognition devices, inspired by the iontronic-reliant human haptic sensory system, show great potential in future robotics and prosthetics. However, poor tactile memory and the complexity of integrating diverse modules for tactile sensing and neuromorphic functionalities pose a formidable challenge. Here, a mechanoreceptor-inspired tactile memory-in-sensor (TMIS) device is presented, employing ferroelectric-assisted ion dynamics (FAID) in FAID-based synaptic tactile transistor (FAID-STT). This approach improves the long-term memory (LTM) of tactile information while minimizing power consumption, all within a unified device architecture of TMIS. The FAID mechanism intricately combines the release of trapped ions solely under mechanical stress with remnant ferroelectric polarization induced by voltage stimulation, ensuring prolonged memory retention. Consequently, the FAID-STT exhibits a voltage-dependent memory effect stemming from the augmentation of ferroelectric dipole polarization, offering uninterrupted tactile memory for over 12 min without requiring additional power inputs for memory retention.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁电辅助离子动力学在仿生传感器记忆系统中的长时间触觉认知
受依赖离子电子的人类触觉感知系统的启发,在开发低功率人工触觉认知设备方面取得的进展显示了未来机器人和假肢的巨大潜力。然而,触觉记忆能力差以及整合触觉传感和神经形态功能的各种模块的复杂性构成了严峻的挑战。本文介绍了一种机械感受器启发的触觉记忆传感器(TMIS)装置,该装置在基于铁电辅助离子动力学(FAID)的突触触觉晶体管(FAID-STT)中采用了铁电辅助离子动力学(FAID)。这种方法改进了触觉信息的长期记忆 (LTM),同时最大限度地降低了功耗,所有这一切都在统一的触觉传感器器件架构内实现。FAID 机制将仅在机械应力作用下释放的截留离子与电压刺激引起的残余铁电极化巧妙地结合在一起,确保了记忆的长期保持。因此,FAID-STT 通过增强铁电偶极极化,表现出电压依赖性记忆效应,可提供超过 12 分钟的不间断触觉记忆,而无需额外的电源输入来保持记忆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
High-Throughput Production of Electrically Conductive Yarn (E-Yarn) for Smart Textiles Encapsulated Organohydrogel Couplants for Wearable Ultrasounds Improved Magnetoresistance of Tungsten Telluride and Silver Telluride Composites Overcoming Endurance Limitations in Organic Nonvolatile Memories Through N-Type Small-Molecule Semiconductor Implementation and Thermal Optimization Aluminum Scandium Nitride as a Functional Material at 1000 °C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1