Photoinduced Melting of V4O7 Correlated State

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-12-15 DOI:10.1002/aelm.202400539
Alexander Bartenev, Camilo Verbel, Qin Wu, Fernando Camino, Armando Rúa, Sergiy Lysenko
{"title":"Photoinduced Melting of V4O7 Correlated State","authors":"Alexander Bartenev, Camilo Verbel, Qin Wu, Fernando Camino, Armando Rúa, Sergiy Lysenko","doi":"10.1002/aelm.202400539","DOIUrl":null,"url":null,"abstract":"The compound V<sub>4</sub>O<sub>7</sub> is one of the Magnéli phase (<i>V</i><sub><i>n</i></sub><i>O</i><sub>2<i>n</i> − 1</sub>, <i>n</i> = 3, 4, …, 9) correlated vanadium oxides with distinct intriguing electronic and structural properties. The possibility to manipulate the phase state of V<sub>4</sub>O<sub>7</sub> on an ultrafast time scale by light makes this material promising for potential applications in photonics, optoelectronics, quantum, and neuromorphic circuit design. In this work, the ultrafast spectroscopy of V<sub>4</sub>O<sub>7</sub> reveals the second-order nature of the photoinduced insulator-to-metal transition, emphasizing electronic and lattice contributions. The findings reveal the influence of the laser excitation level and temperature on these dynamics, providing a comprehensive understanding of V<sub>4</sub>O<sub>7</sub> structural changes and response to external stimuli. The phenomenological model based on the Landau–Ginzburg formalism provides a robust framework for explaining the photoinduced transition dynamics, showing a detailed picture of the light interaction with the electronic and lattice subsystems. This integrated approach significantly enhances the understanding of V<sub>4</sub>O<sub>7</sub> complex behavior upon photoexcitation, opening new possibilities for developing new optoelectronic devices and noninvasive optical control of the phase transition pathways in vanadates.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"22 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400539","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The compound V4O7 is one of the Magnéli phase (VnO2n − 1, n = 3, 4, …, 9) correlated vanadium oxides with distinct intriguing electronic and structural properties. The possibility to manipulate the phase state of V4O7 on an ultrafast time scale by light makes this material promising for potential applications in photonics, optoelectronics, quantum, and neuromorphic circuit design. In this work, the ultrafast spectroscopy of V4O7 reveals the second-order nature of the photoinduced insulator-to-metal transition, emphasizing electronic and lattice contributions. The findings reveal the influence of the laser excitation level and temperature on these dynamics, providing a comprehensive understanding of V4O7 structural changes and response to external stimuli. The phenomenological model based on the Landau–Ginzburg formalism provides a robust framework for explaining the photoinduced transition dynamics, showing a detailed picture of the light interaction with the electronic and lattice subsystems. This integrated approach significantly enhances the understanding of V4O7 complex behavior upon photoexcitation, opening new possibilities for developing new optoelectronic devices and noninvasive optical control of the phase transition pathways in vanadates.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光诱导 V4O7 相关态熔化
化合物 V4O7 是 Magnéli 相(VnO2n - 1,n = 3、4、......、9)相关钒氧化物之一,具有独特的引人入胜的电子和结构特性。通过光在超快时间尺度上操纵 V4O7 相态的可能性使这种材料有望在光子学、光电子学、量子和神经形态电路设计中得到潜在应用。在这项研究中,V4O7 的超快光谱揭示了光诱导绝缘体到金属转变的二阶性质,强调了电子和晶格的贡献。研究结果揭示了激光激发水平和温度对这些动力学的影响,从而提供了对 V4O7 结构变化和对外部刺激响应的全面理解。基于朗道-金兹堡形式主义的现象学模型为解释光诱导转变动力学提供了一个稳健的框架,展示了光与电子和晶格子系统相互作用的详细图景。这种综合方法极大地增强了人们对 V4O7 在光激发下复杂行为的理解,为开发新型光电器件和对钒酸盐相变途径的非侵入式光学控制提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
High-Throughput Production of Electrically Conductive Yarn (E-Yarn) for Smart Textiles Encapsulated Organohydrogel Couplants for Wearable Ultrasounds Improved Magnetoresistance of Tungsten Telluride and Silver Telluride Composites Overcoming Endurance Limitations in Organic Nonvolatile Memories Through N-Type Small-Molecule Semiconductor Implementation and Thermal Optimization Aluminum Scandium Nitride as a Functional Material at 1000 °C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1