Spin-Orbit-Locking Vectorial Metasurface Holography

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-12-16 DOI:10.1002/adma.202415142
Zhipeng Yu, Xinyue Gao, Jing Yao, Haoran Li, Yuzhi Shi, Bo Li, Zhenwei Xie, Xiaocong Yuan, Puxiang Lai, Qinghua Song
{"title":"Spin-Orbit-Locking Vectorial Metasurface Holography","authors":"Zhipeng Yu, Xinyue Gao, Jing Yao, Haoran Li, Yuzhi Shi, Bo Li, Zhenwei Xie, Xiaocong Yuan, Puxiang Lai, Qinghua Song","doi":"10.1002/adma.202415142","DOIUrl":null,"url":null,"abstract":"Vectorial metasurface holography, allowing for independent control over the amplitude, phase, and polarization distribution of holographic images enabled by metasurfaces, plays a crucial role in the realm of optical display, optical, and quantum communications. However, previous research on vectorial metasurface holography has typically been restricted to single degree of freedom input and single channel output, thereby demonstrating a very limited modulation capacity. This work presents a novel method to achieve multi-channel vectorial metasurface holography by harnessing spin-orbit-locking vortex beams. In each channel, the optical vectorial field is encoded with a pair of total angular momentums (TAMs) featuring two orthogonal spin angular momentums (SAMs) independently locked with arbitrary orbital angular momentums (OAMs). The methodology relies on a modified Gerchberg-Saxton algorithm, enabling the encoding of various TAM channels within a single phase profile. Consequently, a pure geometry-phase metasurface with a non-interleaved approach can be used to support such multi-channel vectorial holography, achieving high selectivity of both SAM and OAM, and offering precise routing and manipulation of complex light channels. The work presents a paradigm shift in the field of holography, offering promising avenues for high-density optical information processing and future photonic device design.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"106 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415142","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Vectorial metasurface holography, allowing for independent control over the amplitude, phase, and polarization distribution of holographic images enabled by metasurfaces, plays a crucial role in the realm of optical display, optical, and quantum communications. However, previous research on vectorial metasurface holography has typically been restricted to single degree of freedom input and single channel output, thereby demonstrating a very limited modulation capacity. This work presents a novel method to achieve multi-channel vectorial metasurface holography by harnessing spin-orbit-locking vortex beams. In each channel, the optical vectorial field is encoded with a pair of total angular momentums (TAMs) featuring two orthogonal spin angular momentums (SAMs) independently locked with arbitrary orbital angular momentums (OAMs). The methodology relies on a modified Gerchberg-Saxton algorithm, enabling the encoding of various TAM channels within a single phase profile. Consequently, a pure geometry-phase metasurface with a non-interleaved approach can be used to support such multi-channel vectorial holography, achieving high selectivity of both SAM and OAM, and offering precise routing and manipulation of complex light channels. The work presents a paradigm shift in the field of holography, offering promising avenues for high-density optical information processing and future photonic device design.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自旋轨道锁定矢量元表面全息技术
矢量元面全息技术允许对元面全息图像的振幅、相位和偏振分布进行独立控制,在光学显示、光学和量子通信领域发挥着至关重要的作用。然而,以往关于矢量元表面全息技术的研究通常局限于单自由度输入和单通道输出,因此显示出非常有限的调制能力。本研究提出了一种利用自旋轨道锁定涡旋光束实现多通道矢量元表面全息的新方法。在每个通道中,光学矢量场由一对总角动量(TAM)编码,这对总角动量具有两个正交自旋角动量(SAM),并与任意轨道角动量(OAM)独立锁定。该方法依赖于改进的格奇伯格-萨克斯顿算法,能够在单个相位轮廓中对各种 TAM 通道进行编码。因此,采用非交错方法的纯几何相位元面可用于支持这种多通道矢量全息技术,实现 SAM 和 OAM 的高选择性,并提供复杂光通道的精确路由和操纵。这项研究为全息领域带来了范式转变,为高密度光信息处理和未来光子设备设计提供了前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Guided and Space Waves Multiplexed Metasurface for Advanced Electromagnetic Functionalities in Microwave Region Machine Learning in Solid-State Hydrogen Storage Materials: Challenges and Perspectives Expandable Fast Li-Ion Diffusion Network of Li-Rich Mn-Based Oxides via Single-Layer LiCo(Ni)O2 Segregation Large Scale Synthesis of Red-Emitting Quantum Dots for Efficient and Stable Light-Emitting Diodes Decoupling the Effects of Interface Chemical Degradation and Mechanical Cracking in Solid-State Batteries with Silicon Electrode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1