Yufei Hang Wang, Roberto García Carrillo, Hang Ren
{"title":"Kinetics and Dynamics of Atomic-Layer Dissolution on Low-Defect Ag","authors":"Yufei Hang Wang, Roberto García Carrillo, Hang Ren","doi":"10.1039/d4sc05954a","DOIUrl":null,"url":null,"abstract":"Electrochemical metal dissolution reaction is a fundamental process in various critical technologies, including metal anode batteries and nanofabrication. However, experimentally revealing the kinetics and dynamics of active sites of metal dissolution reactions is challenging. Herein, we investigate metal dissolution on near-perfect single-crystal surfaces of Ag within regions of a few hundred nanometers isolated by scanning electrochemical cell microscopy (SECCM). Potential oscillation is observed under constant current conditions for dissolution. The one-to-one correspondence between the dissolution charge and the geometry of the dissolution from colocalized imaging allows ambiguous correlation, which suggests that each oscillation cycle corresponds to the dissolution of one atomic layer. The oscillation behavior is further explained in a kinetic model, which reveals that the oscillation comes from the dynamic evolution of the number of different active sites as the dissolution progresses on each atomic layer. In addition to the fundamental interest, the ability to observe layer-by-layer dissolution in electrochemical measurement suggests a potential pathway for developing electrochemical atomic layer etching for fabricating structures and devices with atomic precision.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"232 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc05954a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical metal dissolution reaction is a fundamental process in various critical technologies, including metal anode batteries and nanofabrication. However, experimentally revealing the kinetics and dynamics of active sites of metal dissolution reactions is challenging. Herein, we investigate metal dissolution on near-perfect single-crystal surfaces of Ag within regions of a few hundred nanometers isolated by scanning electrochemical cell microscopy (SECCM). Potential oscillation is observed under constant current conditions for dissolution. The one-to-one correspondence between the dissolution charge and the geometry of the dissolution from colocalized imaging allows ambiguous correlation, which suggests that each oscillation cycle corresponds to the dissolution of one atomic layer. The oscillation behavior is further explained in a kinetic model, which reveals that the oscillation comes from the dynamic evolution of the number of different active sites as the dissolution progresses on each atomic layer. In addition to the fundamental interest, the ability to observe layer-by-layer dissolution in electrochemical measurement suggests a potential pathway for developing electrochemical atomic layer etching for fabricating structures and devices with atomic precision.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.