{"title":"Engineered Sodium Metal Anodes: Tackling Sulfur-Derivative Challenges for Advanced Sodium–Sulfur Batteries","authors":"Qing Zhao, Tiehan Mei, Yi Li, Xitao Lin, Yubin Niu, Jian Jiang, Maowen Xu, Yuruo Qi","doi":"10.1002/aenm.202404901","DOIUrl":null,"url":null,"abstract":"The development of room temperature sodium–sulfur (RT Na─S) batteries has been significantly constrained by the dissolution/shuttle of sulfur-derivatives and the instability of sodium anode. This study presents an engineered sodium metal anode (NBS), featuring sodium bromide (NaBr) along with sodiophilic components like tin metal (Sn) and sodium-tin (Na─Sn) alloy. This configuration exhibits high plating/stripping reversibility with minimal nucleation/growth barriers in an ester-based electrolyte, allowing stable cycling of symmetric cells at 2 mA cm⁻<sup>2</sup>/2 mA h cm⁻<sup>2</sup> for over 2000 h at a low overpotential of 30 mV. Importantly, the weak adsorption and reduced electron transfer towards sulfur-derivatives, along with the facile dissociation of Na<sub>2</sub>S<sub>2</sub>/Na<sub>2</sub>S, effectively minimize the accumulation of sulfur-derivatives, thereby improving the interfacial stability of the NBS electrode in sulfur-derivatives-involved conditions. As a result, the NBS anode endows the Na─S full cells paired with either a Co-NMCN@S or SPAN cathode superior electrochemical performance, with the SPAN//NBS system delivering an outstanding reversible capacity of 1639.5 mA h g⁻¹ and a low degradation rate of 0.06% per cycle at 0.5C. This study elucidates the complex deposition/dissolution kinetics and interface chemistry associated with sulfur species, providing valuable insights for enhancing sodium anodes in practical RT Na─S systems.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"25 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404901","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of room temperature sodium–sulfur (RT Na─S) batteries has been significantly constrained by the dissolution/shuttle of sulfur-derivatives and the instability of sodium anode. This study presents an engineered sodium metal anode (NBS), featuring sodium bromide (NaBr) along with sodiophilic components like tin metal (Sn) and sodium-tin (Na─Sn) alloy. This configuration exhibits high plating/stripping reversibility with minimal nucleation/growth barriers in an ester-based electrolyte, allowing stable cycling of symmetric cells at 2 mA cm⁻2/2 mA h cm⁻2 for over 2000 h at a low overpotential of 30 mV. Importantly, the weak adsorption and reduced electron transfer towards sulfur-derivatives, along with the facile dissociation of Na2S2/Na2S, effectively minimize the accumulation of sulfur-derivatives, thereby improving the interfacial stability of the NBS electrode in sulfur-derivatives-involved conditions. As a result, the NBS anode endows the Na─S full cells paired with either a Co-NMCN@S or SPAN cathode superior electrochemical performance, with the SPAN//NBS system delivering an outstanding reversible capacity of 1639.5 mA h g⁻¹ and a low degradation rate of 0.06% per cycle at 0.5C. This study elucidates the complex deposition/dissolution kinetics and interface chemistry associated with sulfur species, providing valuable insights for enhancing sodium anodes in practical RT Na─S systems.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.