Electric Field Sponge Effect of Conducting Polymer Interphases Boosts the Kinetics and Stability of Zinc Metal Anodes

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-12-15 DOI:10.1002/aenm.202404090
Dengke Wang, Ning Zhang, Yi Zhang, Le Chang, Haohao Tang, Wenming Zhang, Qiancheng Zhu
{"title":"Electric Field Sponge Effect of Conducting Polymer Interphases Boosts the Kinetics and Stability of Zinc Metal Anodes","authors":"Dengke Wang, Ning Zhang, Yi Zhang, Le Chang, Haohao Tang, Wenming Zhang, Qiancheng Zhu","doi":"10.1002/aenm.202404090","DOIUrl":null,"url":null,"abstract":"Aqueous zinc (Zn) batteries (AZBs) are regarded as a prime choice for large-scale energy storage due to their high safety and low cost. Nevertheless, the issues of Zn dendrites and side reactions seriously limit the cycling stability of AZBs. Herein, it is found that the electric field sponge effect of poly (3,4-ethylenedioxythiophene) (PEDOT) as a model conducting polymer interphase can boost the kinetics and stability of Zn anodes. During Zn<sup>2+</sup> plating, the electron-rich conjugated π─π bonds can accelerate Zn<sup>2+</sup> migration and reduction. During Zn<sup>2+</sup> stripping, the electron-deficient conjugated π─π bonds can promote Zn<sup>2+</sup> transfer from the Zn substrate into electrolytes. The Coulombic attractive/repulsive force-regulated Zn<sup>2+</sup>-plating/stripping behavior is similar to the absorbing/squeezing processes of water from sponges, so the electric field sponge effect is proposed. This concept applies to other conducting polymer interphases, such as polyaniline and polypyrrole. Moreover, the presence of conducting polymer interphases effectively suppresses the water-induced side reactions on Zn. Consequently, the Zn@PEDOT electrode manifests a superior long lifespan of 5250 h (1 and 1 mAh cm<sup>−2</sup>) and an ultra-high current density tolerance of 80 mA cm<sup>−2</sup> and assures the coin-type and pouch-type Zn-based full batteries with excellent cycling stability.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"22 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404090","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc (Zn) batteries (AZBs) are regarded as a prime choice for large-scale energy storage due to their high safety and low cost. Nevertheless, the issues of Zn dendrites and side reactions seriously limit the cycling stability of AZBs. Herein, it is found that the electric field sponge effect of poly (3,4-ethylenedioxythiophene) (PEDOT) as a model conducting polymer interphase can boost the kinetics and stability of Zn anodes. During Zn2+ plating, the electron-rich conjugated π─π bonds can accelerate Zn2+ migration and reduction. During Zn2+ stripping, the electron-deficient conjugated π─π bonds can promote Zn2+ transfer from the Zn substrate into electrolytes. The Coulombic attractive/repulsive force-regulated Zn2+-plating/stripping behavior is similar to the absorbing/squeezing processes of water from sponges, so the electric field sponge effect is proposed. This concept applies to other conducting polymer interphases, such as polyaniline and polypyrrole. Moreover, the presence of conducting polymer interphases effectively suppresses the water-induced side reactions on Zn. Consequently, the Zn@PEDOT electrode manifests a superior long lifespan of 5250 h (1 and 1 mAh cm−2) and an ultra-high current density tolerance of 80 mA cm−2 and assures the coin-type and pouch-type Zn-based full batteries with excellent cycling stability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Designing Copolymeric SEI Layer Based on Click Reaction toward Ultralow N/P Ratio and Long Cycle Life Zinc Ion Batteries Spring Effect Endowing P-doped Li3VO4 With Long-standing Catalytic Activity for Tuning Cycling Stability of MgH2 Mapping Reaction Mechanism During Overcharge of a LiNiO2/Graphite–Silicon Lithium-Ion Battery: A Correlative Operando Approach by Simultaneous Gas Analysis and Synchrotron Scattering Techniques Single-Atom Platinum Immobilized on Polyimide for Highly Efficient and Durable Hydrogen Evolution Electrocatalysis Tailoring Molecular Space to Navigate Phase Complexity in Cs-Based Quasi-2D Perovskites via Gated-Gaussian-Driven High-Throughput Discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1